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ABSTRACT. The inf-sup constant for the divergence, or LBB constant, is explicitly known

for only few domains. For other domains, upper and lower estimates are known. If more pre-

cise values are required, one can try to compute a numerical approximation. This involves, in

general, approximation of the domain and then the computation of a discrete LBB constant

that can be obtained from the numerical solution of an eigenvalue problem for the Stokes

system. This eigenvalue problem does not fall into a class for which standard results about

numerical approximations can be applied. Indeed, many reasonable finite element methods

do not yield a convergent approximation. In this article, we show that under fairly weak con-

ditions on the approximation of the domain, the LBB constant is an upper semi-continuous

shape functional, and we give more restrictive sufficient conditions for its continuity with

respect to the domain. For numerical approximations based on variational formulations of

the Stokes eigenvalue problem, we also show upper semi-continuity under weak approxi-

mation properties, and we give stronger conditions that are sufficient for convergence of the

discrete LBB constant towards the continuous LBB constant. Numerical examples show that

our conditions are, while not quite optimal, not very far from necessary.

1. INTRODUCTION

We define the usual inf-sup constant for the divergence or Ladyzhenskaya-Babuška-Brezzi

(LBB) constant β(Ω) as

(1.1) β(Ω) = inf
q∈L2

◦
(Ω)

sup
v∈H1

0
(Ω)d

〈
div v, q

〉
Ω

|v|1,Ω ‖q‖0,Ω
.

The constant thus depends on a domain (connected open set) Ω ⊂ Rd and on two function

spaces, the space (“pressure space”) L2
◦(Ω) of square integrable functions with mean value

zero, with norm ‖ · ‖0,Ω and scalar product
〈
·, ·

〉
Ω

, and the “velocity space”, which is the

vector-valued version of the standard Sobolev space H1
0 (Ω), closure of the space of smooth

functions of compact support in Ω with respect to the H1 seminorm, which for vector-valued

functions is defined by

|v |1,Ω = ‖ gradv‖0,Ω =
( d∑

k=1

d∑

j=1

‖∂xj
vk‖20,Ω

)1/2

.

The present article is devoted to the study of the variation of the LBB constant with respect

to changes of the domain and also of the two function spaces.
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The inf-sup condition β(Ω) > 0 plays an important role in the existence and stability of

solutions of incompressible fluid models such as the Stokes and Navier–Stokes equations,

see for example [17, Chap. I, Theorem 4.1]. It has been known for a long time to be true for

bounded domains satisfying a uniform cone condition, that is, Lipschitz domains [6] and has

more recently been shown for the larger class of John domains defined by a “twisted cone”

condition [1]. It is, however, not satisfied for domains having an exterior cusp [14, 25].

If one defines an analogous “discrete LBB constant” βn by

(1.2) βn = inf
q∈Mn

sup
v∈Xn

〈
div v, q

〉
Ω

|v|1,Ω ‖q‖0,Ω
,

where

Mn ⊂ L2
◦(Ω) and Xn ⊂ H1

0 (Ω)
d

are subspaces, then it is known that the discrete LBB condition

(1.3) ∀n, βn ≥ β⋆ > 0

plays an equally important role for the stability of Galerkin approximation methods for

the Stokes system defined by a sequence of finite-dimensional subspaces (Xn,Mn)n [2, 8],

[17, Chap. II, Theorem 1.1]. There exists a large body of literature proving discrete LBB

conditions (1.3) for many pairs of velocity/pressure spaces (Xn,Mn).
Much less is known about the question whether βn is an approximation of β(Ω), namely

(1.4) lim
n→∞

βn = β(Ω) .

It turns out that there is a large class of finite element methods for which a uniform lower

bound (1.3) has been shown, but the convergence (1.4) has not been established, and some-

times is even false. One of the main results of this work is to give conditions on the ap-

proximation properties of the spaces Xn and Mn so that the convergence (1.4) is true, see

Theorem 5.1.

Under much weaker approximation properties, concerning only the pressure spaces Mn,

we show upper semi-continuity (see Theorem 2.1), which implies in particular that the uni-

form lower bound β⋆ in the discrete LBB condition (1.3) can never be better than the (con-

tinuous) LBB constant β(Ω):

(1.5) β⋆ ≤ β(Ω) .

The latter result has been shown under more restrictive hypotheses in [9, Theorem 1.2].

Regarding the approximation of the domain Ω, we prove two general results. For inner

approximations, we show upper semi-continuity of β(Ω) under the weak condition that the

difference of the domains tends to zero in measure, see Theorem 2.2. We describe several

examples where one does not have convergence of β(Ω) in this situation.

The second main result of this paper is that under convergence with respect to Lipschitz

deformations of a bounded Lipschitz domain Ω, one does have continuity of the constant

β(Ω), see Theorem 4.4. As a corollary, we find that the LBB constant converges if a smooth

plane domain is approximated by polygonal interpolation. This has an important applica-

tion in finite element discretizations, where the first step often consists in replacing a curved

domain by a union of triangles or polyhedra. Our result shows that this replacement es-

sentially does not deteriorate the stability of the continuous problem. A second application
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is in the numerical approximation of the inf-sup constant itself, where one might want to

approximate both the function spaces and the domain.

The outline of this article is as follows:

• We first prove in Section 2 upper semi-continuity results of the inf-sup constant both

with respect to the function spaces and with respect to interior approximations of the do-

main.

• Section 3 is devoted to several examples exhibiting various types of converging do-

mains, resulting in convergence or non-convergence of the inf-sup constant.

• Then in Section 4 we prove the continuity with respect to Lipschitz deformations of

the domain and, as a corollary, with respect to polygonal approximations of smooth plane

domains.

• Finally, in Section 5 we prove that under certain conditions, the discrete inf-sup con-

stants converge to the continuous inf-sup constant. We give several numerical examples

exhibiting convergence or non-convergence.

2. UPPER SEMI-CONTINUITY

We first prove a general result about the upper semi-continuity of the inf-sup constants

βn defined in (1.2) as n tends to infinity. We then show that this result can be used in two

ways: First as a statement on the behavior of the sequence of the inf-sup constants β(Ωn)
for subdomains Ωn ⊂ Ω converging to Ω, and second as a statement of the relation between

the discrete LBB condition (1.3) and the LBB constant β(Ω).

2.1. Upper semi-continuity with respect to the function spaces. We now state and prove

a key result.

Theorem 2.1. Let Ω ⊂ Rd be a bounded domain. Let Mn ⊂ L2
◦(Ω) and Xn ⊂ H1

0 (Ω)
d,

n ∈ N, be a sequence of closed subspaces. Let βn be the inf-sup constant defined by these

spaces according to (1.2). We assume that the sequence Mn is asymptotically dense in the

sense that for every q ∈ L2
◦(Ω) there exists a sequence (qn)n∈N with qn ∈ Mn converging to

q in L2(Ω). Then

(2.1) lim sup
n→∞

βn ≤ β(Ω) .

Proof. For q ∈ L2
◦(Ω) define

(2.2) J(q) = sup
v∈H1

0
(Ω)d

〈
div v, q

〉
Ω

|v|1,Ω
and Jn(q) = sup

v∈Xn

〈
div v, q

〉
Ω

|v|1,Ω
.

Owing to the inequality

‖ div v‖0,Ω ≤ |v |1,Ω,
the functionals J and Jn satisfy for all q ∈ L2

◦(Ω)

|J(q)| ≤ ‖q‖0,Ω , |Jn(q)| ≤ ‖q‖0,Ω.
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Moreover, the functional J is continuous in L2
◦(Ω), as can be seen by introducing the func-

tion w(q) ∈ H1
0 (Ω)

d defined as the solution of the Dirichlet problem ∆w(q) = grad q, or

in variational form

(2.3) ∀v ∈ H1
0 (Ω)

d,
〈

gradw(q), gradv

〉
Ω
=

〈
div v, q

〉
Ω
.

It is easy to see that the supremum in J(q) is attained by the function v = w(q). The map-

ping q 7→ w(q) being continuous from L2
◦(Ω) to H1

0 (Ω)
d, the continuity of the functional J

follows from the formula

J(q) =

〈
divw(q), q

〉
Ω

|w(q)|1,Ω
= |w(q)|1,Ω.

We assume now that, possibly after passing to a subsequence, the sequence (βn)n converges

to some β∞. Let a nontrivial function q ∈ L2
◦(Ω) be given and choose qn ∈ Mn such that

qn → q in L2(Ω). We have

J(q)

‖q‖0,Ω
= lim

n→∞

J(qn)

‖qn‖0,Ω
and

J(qn) ≥ Jn(qn) ≥ βn‖qn‖0,Ω ,

which together imply

J(q)

‖q‖0,Ω
≥ β∞ .

From the definition

β(Ω) = inf
q∈L2

◦
(Ω)

J(q)

‖q‖0,Ω
we therefore get the desired inequality β(Ω) ≥ β∞. �

2.2. Inner approximations of the domain. A first corollary of Theorem 2.1 is obtained

by defining the subspaces Xn and Mn via the natural inclusion of the spaces H1
0 (Ωn)

d and

L2
◦(Ωn), respectively, where Ωn is a subdomain of Ω.

Theorem 2.2. Let Ω ⊂ Rd be a bounded domain. Assume that the sequence of domains(
Ωn

)
n∈N converges to the limiting domain Ω in the following sense

(2.4) ∀n ∈ N, Ωn ⊂ Ω and meas(Ω \ Ωn) −→
n→∞

0 ,

where meas denotes the Lebesgue measure. Then there holds

(2.5) lim sup
n→∞

β(Ωn) ≤ β(Ω) .

Proof. For a function q defined on Ωn, let q̃ be its extension by 0 to Ω. This mapping

Zn : q 7→ q̃ defines the natural inclusions of L2(Ωn) into L2(Ω) and of H1
0 (Ωn) into H1

0 (Ω).
We define

Mn = ZnL
2
◦(Ωn) ⊂ L2

◦(Ω) and Xn = ZnH
1
0 (Ωn)

d ⊂ H1
0 (Ω)

d
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and check that βn as defined in (1.2) then coincides with β(Ωn). We have to verify the

hypothesis on the approximation property of Mn: Choose q ∈ L2
◦(Ω), let us set on Ωn:

qn = q
∣∣
Ωn

− 1

meas(Ωn)

∫

Ωn

q(x) dx,

and let q̃n be the extension by 0 of qn to Ω. Then it is easy to see that

qn ∈ L2
◦(Ωn), q̃n ∈ Mn ⊂ L2

◦(Ω), and q̃n −→
n→∞

q in L2(Ω).

Theorem 2.1 can now be applied and gives the inequality (2.5). �

We discuss in Section 3 several examples of domains Ωn tending to a domain Ω and

observe whether or not β(Ωn) converges to β(Ω).

2.3. Discrete and continuous LBB conditions. In a conforming finite element discretiza-

tion of the Stokes or Navier–Stokes equations, the trial space of the pressure variable is a

finite-dimensional subspace Mn of L2
◦(Ω), and the trial space for the velocity variable is

a finite-dimensional subspace Xn of H1
0 (Ω)

d. The index n may be representative for the

sum of the dimensions of these spaces. The discrete inf-sup constant is defined as in (1.2),

and the uniform positivity of βn, as expressed by the discrete LBB condition (1.3) plays an

important role in the analysis of the method.

Proving uniform lower bounds for βn for various pairs of finite element spaces (Xn,Mn)
is an important subject of many papers in numerical fluid dynamics. A standard procedure

in such proofs is the construction of a Fortin operator, see [18]. This is a projection operator

Πn : H1
0 (Ω)

d → Xn

satisfying for each q ∈ Mn

∀v ∈ H1
0 (Ω)

d,
〈
div Πnv, q

〉
Ω
=

〈
div v, q

〉
Ω
.

The Fortin operator provides a lower bound for the discrete inf-sup constant via the inequal-

ity

β(Ω)‖q‖0,Ω ≤ J(q) = sup
v∈H1

0
(Ω)d

〈
div v, q

〉
Ω

|v|1,Ω
= sup

v∈H1
0
(Ω)d

〈
div Πnv, q

〉
Ω

|Πnv|1,Ω
|Πnv|1,Ω
|v|1,Ω

≤ sup
v∈Xn

〈
div v, q

〉
Ω

|v|1,Ω
‖Πn‖ = Jn(q)‖Πn‖

valid for all q ∈ Mn. Here ‖Πn‖ is the operator norm of Πn in H1
0 (Ω)

d associated with the

norm | · |1,Ω. Dividing by ‖q‖0,Ω and taking the infimum over q ∈ Mn, one finds

β(Ω) ≤ βn‖Πn‖ .
Uniformly bounding ‖Πn‖ is then the main work in the proof of the discrete LBB condition.

The resulting lower bound βn ≥ β(Ω)
‖Πn‖ lies always below β(Ω), because the norm of the

projection operator Πn is always at least 1.

The available theoretical estimates of the discrete LBB conditions may be very pessimistic

compared to what is really observed in the numerical algorithms, but the fact that the uniform
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discrete LBB bound is always below the inf-sup constant of the domain is a corollary to the

upper semi-continuity shown in Theorem 2.1.

Theorem 2.3. Suppose that the sequence of spaces (Xn,Mn)n∈N satisfies the discrete LBB

condition

inf
n∈N

βn = β⋆ > 0

and that the sequence Mn is asymptotically dense in L2
◦(Ω). Then

β⋆ ≤ β(Ω) .

Proof. This is an immediate consequence of Theorem 2.1. �

3. EXAMPLES OF DEPENDENCE WITH RESPECT TO THE DOMAIN

We present several examples of sequences of domains Ωn that converge to a limiting

domain Ω in various senses. All examples satisfy the assumption of Theorem 2.2, after a

possible rescaling to achieve Ωn ⊂ Ω. Some of them satisfy a stronger assumption (namely,

the transformations tend to the identity in Lipschitz norm) and convergence occurs. As was

already mentioned in [27] for conformal mappings, the absence of such a condition results

in an absence of convergence.

3.1. Cusp domains tending to a Lipschitz domain. For each integer n ≥ 1, let Ωn be the

set of points (x, y) such that

0 < x < 1, −x
1

n
+1 < y < x

1

n
+1.

For any n, the domain Ωn has a cusp at the origin. By similar arguments as in [25], we

derive that β(Ωn) = 0. In the limit n → ∞, we obtain the isosceles right triangle

Ω = {(x, y) ∈ R2, 0 < x < 1, −x < y < x}.
So Ω is a Lipschitz domain and its inf-sup constant is positive. We note that for any n ≥ 1

Ωn ⊂ Ω,

and the distance of ∂Ωn to ∂Ω is smaller than sup0≤x≤1 x(1 − x
1

n ). This implies that the

measure of Ω \ Ωn tends to zero when n tends to infinity. So we are in the framework of

Theorem 2.1. We have the upper semi-continuity without the continuity:

β(Ωn) = 0 < β(Ω).

3.2. A self-similar excrescence. Another example where the convergence does not hold is

obtained if we add to a disk Ω a small equilateral triangle whose surface tends to 0. Let us

say that Ωn is the union of the unit disk centered at the origin and the equilateral triangle

with side length 1/n and top vertex at (0, 1+ 1
2n
), see Figure 1. The inf-sup constants of Ωn

do not converge to that of the disk as n → ∞ because the presence of the angle π
3

on the

boundary of Ωn implies by virtue of [12, Theorem 3.3] that we have the upper bound for all

n ≥ 1

β(Ωn) ≤
√

1

2
− sinω

2ω
with ω =

π

3
.
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This upper bound is smaller than β(Ω):

β(Ωn) ≤

√
1

2
− 3

√
3

4π
<

√
1

2
= β(Ω) .

n = 1 n = 5 n = 7 n = 25

FIGURE 1. Disks with hats from § 3.2 (left) Epitrochoids from § 3.4 (right)

3.3. Regular polygons tending to a disk. Let Ω be the unit disk in R2 and let Ωn be a

regular convex polygon with n edges which is inscribed in Ω. The Horgan–Payne angle (cf.

[24]) of Ωn with respect to the center of the ball is π
2
− π

n
. Thus, it follows from [21] and

[13, Theorem 5.1] that

sin(
π

4
− π

2n
) ≤ β(Ωn) ≤

1√
2
= sin

π

4
.

Since the inf-sup constant of the disk Ω is 1√
2
, we find

0 ≤ β(Ω)− β(Ωn) ≤ sin
π

4
− sin

(π
4
− π

2n

)
≤ π

2n
.

So we have (at least) a convergence of order 1. This example pertains typically to the frame-

work of polygonal approximation of a regular domain. We prove generally the convergence

of the inf-sup constant in this case, see Theorem 4.6 further on.

3.4. Conformal mappings and epitrochoids. The situation where plane domains are trans-

formed by conformal mappings has been investigated by Zsuppán [27]: Corollary 3.9 loc.cit.

can be stated as follows

Theorem 3.1 (Zsuppán). Let Ω and Ω̃ be two simply connected plane domains with piece-

wise smooth boundaries. Let g denote the bijective conformal mapping of Ω onto Ω̃. If

|g′ − 1| ≤ ε < 1 in the closure of Ω, then we have

∣∣β(Ω)− β(Ω̃)
∣∣ ≤

√
2 ε

1− ε
.

We will generalize this statement to Lipschitz diffeomorphisms in Theorem 4.4 below.

Still in [27], an explicit example of a family of conformal mappings is investigated. The
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domain Ω is chosen as the unit disk and the mapping g depends on two parameters: an

integer n ≥ 2 and a real number c > 0:

gn;c(z) = z − c

n
zn, z ∈ C.

For any c ≤ 1, the transformation gn;c is bijective on the unit disk Ω. Then Ωn is defined

as the image of Ω under gn;c. This is an epitrochoid, see examples with c = 1 in Figure 1.

From [27]

β(Ωn)
2 =

{
1
2
− c

4
(1 + 1

n
) , for n odd,

1
2
− c

4

√
1 + 2

n
, for n even.

As n → ∞, Ωn tends to Ω, because gn;c(z) tends to z uniformly in z for |z| ≤ 1. Neverthe-

less, the assumption of Theorem 3.1 is not satisfied, and

β(Ωn) → β∞ =
√

1
2
− c

4
<

√
1
2
= β(Ω) .

In contrast, if we make c depend on n via the law c = n−α for some positive α, these Ωn

enter the framework of Theorem 3.1 and the convergence of β(Ωn) to β(Ω) occurs.

4. CONTINUITY WITH RESPECT TO THE DOMAIN

4.1. The continuity theorem. We recall that d is the space dimension. We denote by Id the

identity matrix in Rd and by Ed the space of endomorphisms of Rd equipped with the norm

subordinated to the Euclidean norm on Rd. In this section c(d) refers to various constants

depending only on d (and not on the domains or functions under consideration).

Definition 4.1. Let Ω and Ω̃ be two bounded Lipschitz domains in Rd, and let ε be a positive

number. We say that Ω and Ω̃ are ε-close in Lipschitz norm if there exists a diffeomorphism

F = (F1, . . . ,Fd) from Ω̃ onto Ω that satisfies

(4.1)

{
F ∈ W 1,∞(Ω̃)d and ‖DF − Id‖L∞(Ω̃;Ed) ≤ ε ,

F−1 ∈ W 1,∞(Ω)d and ‖DF−1 − Id‖L∞(Ω;Ed) ≤ ε .

Remark 4.2. Condition (4.1) is slightly redundant in the following sense: By an expansion

of DF−1 as a Neumann series of DF − Id we find that if the first line of (4.1) is satisfied

with some value ε0 < 1 of ε, then the second line is satisfied for ε = ε0/(1− ε0).

If condition (4.1) holds, the Jacobian determinant JF of F satisfies the estimate

(4.2) ‖1−JF ‖L∞(Ω̃) ≤ c(d)ε.

Thus, the change of variables F in integrals and partial derivatives yields:

Lemma 4.3. We assume that the diffeomorphismF satisfies property (4.1). Then there holds

(i) For q ∈ L2(Ω), let q̃ denote q ◦ F . Then q̃ belongs to L2(Ω̃) and

(4.3)
1

1 + c(d) ε
‖q‖0,Ω ≤ ‖ q̃‖0,Ω̃ ≤

(
1 + c(d) ε

)
‖q‖0,Ω.
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(ii) For v ∈ H1
0 (Ω), let ṽ denote v ◦ F . Then ṽ belongs to H1

0 (Ω̃) and satisfies the estimates

∀j = 1, . . . , d, ‖∂x̃j
ṽ − (∂xj

v) ◦ F‖0,Ω̃ ≤ c(d) ε |v |1,Ω ,(4.4)

1

1 + c(d)ε
|v |1,Ω ≤ | ṽ |1,Ω̃ ≤ (1 + c(d)ε)|v |1,Ω .(4.5)

Thanks to Lemma 4.3, we are in a position to compare β(Ω̃) with β(Ω). Recall that both

β(Ω̃) and β(Ω) are positive since Ω̃ and Ω are bounded and Lipschitz.

Theorem 4.4. There exists a constant c(d) depending only on the dimension d such that, if

Ω and Ω̃ are ε-close in Lipschitz norm, the following estimate holds

(4.6)
∣∣β(Ω)− β(Ω̃)

∣∣ ≤ c(d) ε.

Proof. Since the property (4.1) defining the ε-closeness is symmetric, it suffices to prove

one inequality

(4.7) β(Ω̃)− c(d)ε ≤ β(Ω)

to prove estimate (4.6).

Thus, let q be any function in L2
◦(Ω). Setting q̃ = q ◦ F , since the mean value of q̃ is not

necessarily zero, we consider instead

q̃0 = q̃JF

that belongs to L2
◦(Ω̃). By (4.2), it satisfies

(4.8) ‖ q̃ − q̃0‖0,Ω̃ ≤ c(d) ε ‖ q̃‖0,Ω̃ .

Combining this with estimates (4.3), we find

(4.9)
1

1 + c(d) ε
‖q‖0,Ω ≤ ‖ q̃0‖0,Ω̃ ≤

(
1 + c(d) ε

)
‖q‖0,Ω.

Now it is well known (see for example [17, Chap. I, Lemma 4.1]) that the inf-sup condition

on Ω̃ yields the existence of a vector function ṽ in H1
0 (Ω̃)

d such that

(4.10) div ṽ = q̃0 and β(Ω̃)|ṽ |1,Ω̃ ≤ ‖ q̃0‖0,Ω̃.
We now set:

v = ṽ ◦ F−1.

The idea is to bound the quantity
∫
Ω
(div v)(x)q(x) dx from below as follows. Using (4.4)

we immediately obtain

(4.11) ‖ div ṽ − (div v) ◦ F‖0,Ω̃ ≤ c(d) ε |v |1,Ω ,

which allows to write

(4.12)

∫

Ω

(div v)(x)q(x) dx =

∫

Ω̃

(div ṽ)(x̃)q̃0(x̃) dx̃+ E

where the error term E is given by

E =

∫

Ω̃

(
(div v) ◦ F − div ṽ

)
(x̃) q̃0(x̃) dx̃.
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We bound this term using (4.11) first,

|E| ≤ c(d) ε |v |1,Ω‖ q̃0‖0,Ω̃
and next (4.9)

(4.13) |E| ≤ c(d) ε |v |1,Ω‖q‖0,Ω.
By substituting (4.13) and the choice (4.10) of ṽ into (4.12), we obtain successively∫

Ω

(div v)(x)q(x) dx ≥
∫

Ω̃

q̃0(x̃)
2 dx̃− c(d) ε |v |1,Ω‖q‖0,Ω

≥ β(Ω̃)|ṽ |1,Ω̃‖ q̃0‖0,Ω̃ − c(d) ε |v |1,Ω‖q‖0,Ω

≥
(
β(Ω̃)− c(d) ε

)
|v |1,Ω‖q‖0,Ω,

where we have used (4.5) and (4.9) for the last line. This proves that β(Ω) is larger than

β(Ω̃)− c(d) ε, which is our aim. �

4.2. Polygonal approximation of plane curved domains. An important application of

Theorem 4.4 is the finite element approximation of curved domains. Let Ω be a two-

dimensional curved polygon with a Lipschitz-continuous and piecewise C2 boundary. This

means that the boundary of Ω is a finite union of C2-arcs Γj that touch at corners ck and

determine opening angles distinct from 0 and 2π, thus excluding outward and inward cusps.

Definition 4.5. Let Ω be a two-dimensional curved Lipschitz polygon with a piecewise C2-

boundary. Let h be a positive number. A polygonal h-approximation of Ω denotes a polygon

Ωh with straight sides such that

(i) Its set of corners contains the set {ck} of corners of Ω,

(ii) Its corners belong to the boundary ∂Ω of Ω,

(iii) The length of each side is less than h.

We now state the main result of this section.

Theorem 4.6. Let Ω be a two-dimensional curved Lipschitz polygon with a piecewise C2-

boundary. There exists a constant c(Ω) such that for all h-approximation Ωh of Ω

(4.14)
∣∣β(Ω)− β(Ωh)

∣∣ ≤ c(Ω) h.

Proof. In view of Theorem 4.4, it would suffice to prove that Ω and Ωh are ε-close for an

ε = c(Ω)h. In fact, we are going to construct a finite number of intermediate domains Ωk
h,

k = 1, . . . , K − 1, such that

• The number of these domains is independent of h,

• Setting Ω0
h = Ω and ΩK

h = Ωh, each pair of consecutive domains (Ωk−1
h ,Ωk

h) are

ε-close for an ε = c(Ω)h, for k = 1, . . . , K.

Taking Definition 4.1 and Remark 4.2 into account, this amounts to prove for each k that

there exists a Lipschitz mapping Fk
h in W 1,∞(Ωk−1

h )2 which is a diffeomorphism from Ωk−1
h

onto Ωk
h and satisfies

(4.15) Fk
h = Id + Gk

h , with ‖DGk
h‖L∞(Ωk−1

h
;E2) ≤ C(Ω)h ,
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where the constant C(Ω) depends only on Ω. Here Id denotes the identity mapping x 7→ x

in R2. To construct this mapping, we proceed in several steps.

STEP 1: PARTITION OF THE DOMAIN. After the possible adjunction of extra points inside

the original sides of Ω, that we will still denote by ck, we may assume that each new smaller

side Γk is the graph of a C2 function in some coordinate system. Thus we can cover the

boundary of the domain Ω by the closure of open sets U1, . . . ,UK so that for each k, 1 ≤
k ≤ K, after a possible rigid motion Mk,

• the set Uk is a rectangle [ak, bk]× [0, rk],
• the local parts of the boundaries ∂Ω ∩ Uk and ∂Ωh ∩ Uk are the graphs of a C2 map

ϕk and a Lipschitz map ϕk
h, respectively, defined on [ak, bk] with values in [0, rk]

• (ak, ϕ(ak)) = (ak, ϕ
k
h(ak)) = ck−1 and (bk, ϕ(bk)) = (bk, ϕ

k
h(bk)) = ck.

Ω

•

••

• U4

U1

U2

U3

•

••

•
Ωh

•

•

•

•
••

•

•

•

•
• •

•

FIGURE 2. A curved square, its map neighborhoods, and its polygonal approximation

Then we introduce intermediate domains Ω0
h = Ω,Ω1

h, . . . ,Ω
K
h = Ωh so that

Ωk−1
h ∩ Uk = Ω ∩ Uk, Ωk

h ∩ Uk = Ωh ∩ Uk, Ωk−1
h ∩ ∁Uk = Ωk

h ∩ ∁Uk.

Here ∁U stands for Rd \ U . It follows that Ωk
h is a local polygonal h-approximation of Ωk−1

h

subordinate to the neighborhood Uk (in the sense that Ωk−1
h and Ωk

h coincide outside Uk and

that the properties (i) to (iii) of Definition 4.5 hold for the parts ∂Ω∩Uk). Indeed, we intend

to construct a diffeomorphism Fk
h from Ωk−1

h onto Ωk
h which is equal to the identity outside

of Uk.

STEP 2: CONSTRUCTION OF THE DIFFEOMORPHISM AT STEP k. From now on, we drop

the exponent k and restrict the discussion to a local polygonal h-approximation in a rectangle

U = (a, b)× (0, r) such that

Ω ∩ U =
{
(x1, x2) ∈ R2, a < x1 < b, 0 < x2 ≤ ϕ(x1)

}
,

Ωh ∩ U =
{
(x1, x2) ∈ R2, a < x1 < b, 0 < x2 ≤ ϕh(x1)

}
.

Without restriction, we assume that ϕ is bounded from below by a constant η0 > 0

(4.16) ∃η0 > 0, ∀x1 ∈ [a, b], ϕ(x1) ≥ η0.



12 CHRISTINE BERNARDI, MARTIN COSTABEL, MONIQUE DAUGE AND VIVETTE GIRAULT

Since, in this situation, Ω and Ωh coincide outside U , then ϕ(a) = ϕh(a) and ϕ(b) = ϕh(b).
We define the diffeomorphism Fh by

Fhx =

{
x if x ∈ Ω ∩ ∁U
(x1,

ϕh(x1)
ϕ(x1)

x2) if x ∈ Ω ∩ U .

So the mapping Fh has a continuous extension to Ω since it is the identity on ∂U ∩ Ω (i.e.,

on the three segments {x1 ∈ [a, b], x2 = 0}, {x1 = a, x2 ∈ [0, ϕ(a)]}, and {x1 = b, x2 ∈
[0, ϕ(b)]}). We write

Fh = Id + Gh with Ghx =

{
0 if x ∈ Ω ∩ ∁U
(0, ϕh(x1)−ϕ(x1)

ϕ(x1)
x2) if x ∈ Ω ∩ U .

Therefore, we have the bound for DGh, with a constant c(Ω) depending only on Ω:

‖DGh‖L∞(Ω;E2) ≤ c(Ω)
∥∥∥ϕh − ϕ

ϕ

∥∥∥
W 1,∞(a,b)

.

Since ϕ′ is bounded from above and ϕ satisfies (4.16), we obtain, for another constant c(Ω),

‖DGh‖L∞(Ω;E2) ≤ c(Ω)‖ϕh − ϕ‖W 1,∞(a,b).

By definition of the polygonal h-approximation, the interval [a, b] is the union of smaller

intervals [a′, b′] of length less than h and such that

ϕh(a
′)− ϕ(a′) = 0, ϕh(b

′)− ϕ(b′) = 0, and ∀x1 ∈ [a′, b′], ϕ′′
h(x1) = 0.

Thus, ϕh is a piecewise affine interpolate of ϕ (see Definition 4.5). Using that ϕ is of class

C2, one obtains immediately

‖ϕh − ϕ‖W 1,∞(a,b) ≤ ‖ϕ′′‖L∞(a,b) (h+ h2).

Then, reintroducing the exponent k, we find, as a direct consequence of Theorem 4.4:

(4.17)
∣∣β(Ωk−1

h )− β(Ωk
h)
∣∣ ≤ c(Ω) h, k = 1, . . . , K.

STEP 3: CONCLUSION. Finally, the bound for
∣∣β(Ω) − β(Ωh)

∣∣ follows from the triangle

inequality

∣∣β(Ω)− β(Ωh)
∣∣ ≤

K∑

k=1

∣∣β(Ωk−1
h )− β(Ωk

h)
∣∣

and estimates (4.17), since the number K does not depend on h. �

Along the same lines of proof as for the two-dimensional case, one can prove conver-

gence of the inf-sup constant for polyhedral approximations of three-dimensional domains.

Suppose, for instance, that Ω ⊂ R3 has a C2 boundary ∂Ω. Then one may consider a family

of polyhedral approximations Ωh defined by regular triangulations of ∂Ω. This means that

the boundary ∂Ωh of Ωh is defined by planar triangles with vertices on ∂Ω whose diameter

is bounded from above by Ch and whose inner radius is bounded from below by ch, where

c and C are constants independent of h. Then, using standard estimates for interpolation

with two-dimensional finite elements, a proof similar to that of Theorem 4.6 above will give

an error estimate of order h for the approximation of β(Ω) by β(Ωh) as in (4.14).
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5. CONTINUITY WITH RESPECT TO THE FUNCTION SPACES

In this section, we give conditions on the sequence of finite-dimensional function spaces

Xn ⊂ H1
0 (Ω)

d, Mn ⊂ L2
◦(Ω), n ∈ N that guarantee that the discrete inf-sup constants βn

converge to the inf-sup constant β(Ω) of the domain. The convergence proof uses argu-

ments in the spirit of the proof of the discrete LBB condition in the paper [26], namely a

combination of inverse estimates for the pressure spaces and approximation properties of

the velocity spaces.

5.1. The continuity theorem. For a regularity index s > 0, we introduce two characteristic

constants associated with the function spaces Xn and Mn. The first constant is defined by

comparing the Sobolev norm of order s on Mn with the equivalent L2 norm (recall that Mn

is finite-dimensional)

(5.1) ηn,s = sup
q∈Mn

‖q‖s,Ω
‖q‖0,Ω

.

The second constant is defined by the approximation property of the spaces Xn

(5.2) εn,s = sup
u∈H1+s(Ω)∩H1

0
(Ω)

inf
v∈Xn

|u− v|1,Ω
‖u‖1+s,Ω

.

Theorem 5.1. Let Ω ⊂ Rd be a bounded Lipschitz domain. We assume that Xn ⊂ H1
0 (Ω)

d,

Mn ⊂ L2
◦(Ω), n ∈ N, are finite-dimensional subspaces and that for some 0 < s < 1

2
, Mn

is contained in the Sobolev space Hs(Ω). Then there is a constant Cs depending on the

domain Ω such that with the constants ηn,s and εn,s defined above, we have

(5.3) βn ≥ β(Ω)− Cs ηn,s εn,s .

In particular, if the Mn are asymptotically dense in L2
◦(Ω) and

(5.4) if lim
n→∞

ηn,s εn,s = 0 then lim
n→∞

βn = β(Ω) .

Proof. Define the functionals J and Jn as in (2.2). Recall that for J we have the relation

J(q) = |w(q)|1,Ω
where w(q) = ∆−1 grad q is the solution of the harmonic Dirichlet problem with grad q as

right-hand side. Likewise, the sup in Jn is attained at wn(q) ∈ Xn, which is the Galerkin

solution wn(q) = ∆−1
n grad q of the Dirichlet problem with the same right-hand side:

(5.5) ∀v ∈ Xn,
〈

gradwn(q), gradv

〉
Ω
=

〈
div v, q

〉
Ω
.

Taking v = wn(q) it follows that

Jn(q) = |wn(q)|1,Ω .
Now for each n, we solve in Mn the finite-dimensional eigenvalue problem for the Schur

complement of the discretized Stokes system

(5.6) Snq = σq with
〈
Snq, p

〉
Ω
= −

〈
wn(q), grad p

〉
∀ p ∈ Mn .
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Let σn be the smallest eigenvalue and qn a corresponding normalized eigenfunction. Thus

qn is a minimizer in Mn of the Rayleigh quotient
〈
Snq, q

〉
Ω

‖q‖20,Ω
=

〈
divwn(q), q

〉
Ω

‖q‖20,Ω
=

|wn(q)|21,Ω
‖q‖20,Ω

=
( Jn(q)

‖q‖0,Ω

)2

.

We see that qn realizes the inf-sup condition, and if ‖qn‖0,Ω = 1, we simply have

βn = Jn(qn) .

Incidentally, we also have shown that σn = β2
n.

Now we can write

β(Ω) ≤ J(qn) = Jn(qn) +
(
J(qn)− Jn(qn)

)

= βn +
(
|w(qn)|1,Ω − |wn(qn)|1,Ω

)

≤ βn + |w(qn)−wn(qn)|1,Ω .

Thus we have to estimate |w(qn) − wn(qn)|1,Ω, which is the Galerkin error in the solution

of the Dirichlet problem with grad qn as right-hand side. We have

|w(qn)−wn(qn)|1,Ω = inf
vn∈Xn

|w(qn)− vn |1,Ω ≤ εn,s‖w(qn)‖1+s,Ω

if w(qn) ∈ H1+s(Ω)d. Now we use the fact that on a Lipschitz domain we have H1+s

regularity for the solution of the Dirichlet problem of the Laplacian, because s ∈ (0, 1
2
), see

[11]:

|w(qn)|1+s,Ω ≤ Cs‖ grad qn‖−1+s,Ω ≤ Cs‖qn‖s,Ω .

With the definition of ηn,s we can further estimate

‖qn‖s,Ω ≤ ηn,s‖qn‖0,Ω = ηn,s .

Altogether we have shown

β(Ω) ≤ βn + εn,sCs ηn,s

as claimed in (5.3). Finally, if limn→∞ ηn,sεn,s = 0, then (5.3) implies

lim inf
n→∞

βn ≥ β(Ω),

which together with inequality (2.1) from Theorem 2.1 proves that lim
n→∞

βn = β(Ω). �

Remark 5.2. The main tools in the proof, namely introduction of Sobolev spaces of frac-

tional order, the approximation property (5.2), the inverse estimate (5.1) and the H1+s reg-

ularity for the Dirichlet problem, were in the end only used to prove the error estimate for

the Galerkin approximation of the Dirichlet problem (5.5) with grad qn as right-hand side,

namely

(5.7) |w(qn)−wn(qn)|1,Ω ≤ δn‖qn‖0,Ω ,

where δn = εn,sCs ηn,s. The assumptions of Theorem 5.1 implied that limn→∞ δn = 0,

which allowed to complete the proof of the convergence of βn. A weaker hypothesis that

would still be sufficient for the convergence result would therefore be to assume directly that

for all qn ∈ Mn , the estimate (5.7) holds with lim
n→∞

δn = 0 .
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There is one situation where this hypothesis obviously holds, namely when w(qn) ∈ Xn for

all qn ∈ Mn, that is, the Dirichlet problem

∆w = grad qn

can be solved exactly in Xn, because then w(qn) = wn(qn). This can be made to happen

in very particular cases, if the Laplacian with Dirichlet conditions can be inverted explicitly

for right-hand sides of the form grad qn where qn runs through a basis of Mn. The space

Xn can then simply be chosen as the space generated by these solutions of the Dirichlet

problem. Such a special situation is analyzed in [15], where the convergence βn → β(Ω) is

then proved.

5.2. Convergence of the first eigenfunction. For the approximation of the inf-sup constant

β(Ω) in Theorem 5.1 we computed the discrete inf-sup constant βn by solving an eigenvalue

problem in Mn. In (5.6), this eigenvalue problem was described by the Schur complement of

the discretized Stokes system. It is easy to see that the eigenvalue problem (5.6) is equivalent

to the following discretized Stokes eigenvalue problem in variational form.

Find (wn, q) ∈ Xn ×Mn and σ ∈ C such that q 6= 0 and

(5.8)
∀v ∈ Xn,

〈
gradwn, gradv

〉
Ω
−

〈
div v, q

〉
Ω
= 0,

∀ p ∈ Mn,
〈
divwn, p

〉
Ω
= σ

〈
q, p

〉
Ω
.

This is an eigenvalue problem in mixed form of the second type studied in [5, Section

4]. In the case of the Stokes system, however, the convergence analysis of [5] does not

apply, because the basic assumption is not satisfied, namely the compactness of the solution

operator TΞ : g 7→ p in L2
◦(Ω) of the Stokes system for (u, p) ∈ H1

0(Ω)
d × L2

◦(Ω)

−∆u + grad p = 0

divu = g .

Indeed, TΞ is the inverse of the Schur complement operator S = div∆−1 grad, and it has

long been known from the analysis of the Cosserat eigenvalue problem [22] that S has a

non-trivial essential spectrum, for example an eigenspace of infinite dimension at σ = 1.

Thus the eigenvalue problem (5.8) does not fit into any known convergence analysis of

eigenvalue approximation methods (and this is the main reason why we had to develop

the analysis presented in this section). In particular, the discrete eigenfunctions qn will,

in general, not converge to an eigenfunction of the corresponding continuous eigenvalue

problem. This is true even when our sufficient conditions for the convergence of the eigen-

values σn → β(Ω)2 are satisfied. We can, however, prove convergence of qn if the con-

tinuous eigenvalue σ(Ω) = β(Ω)2 lies below the essential spectrum. Due to the inherent

non-uniqueness of eigenfunctions, the convergence has to be formulated in a somewhat

convoluted fashion.

Theorem 5.3. Let the sequence of finite-dimensional subspaces Xn and Mn be such that

the sufficient conditions of Theorem 5.1 for the validity of limn→∞ βn = β(Ω) are satis-

fied. Assume further that σ0 = β(Ω)2 is an isolated eigenvalue of the Schur complement

operator S = div∆−1 grad and let P be the orthogonal projection operator in L2
◦(Ω) onto

the eigenspace of S with eigenvalue σ0. Define qn to be a normalized eigenfunction of the
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operator Sn defined in (5.6) associated with its smallest eigenvalue σn = β2
n.

Then qn converges to an eigenfunction of S in the following sense:

(5.9) lim
n→∞

‖qn − Pqn‖0,Ω = 0 .

Proof. It follows from the selfadjointness of S that P and S commute. Since the small-

est eigenvalue σ0 is isolated, there exists δ > 0 such that for all q ∈ kerP there holds〈
Sq, q

〉
Ω
≥ (σ0 + δ)‖q‖20,Ω.

We will now use the notation from the proof of Theorem 2.1. In particular, we have for

any q 〈
Sq, q

〉
Ω
=

〈
divw(q), q

〉
Ω
= |w(q)|2

1,Ω
= J(q)2 .

We can therefore estimate

σ0 = σ0

(
‖Pqn‖20,Ω + ‖qn −Pqn‖20,Ω

)

≤ σ0‖Pqn‖20,Ω + (σ0 + δ)‖qn −Pqn‖20,Ω
≤

〈
SPqn, qn

〉
Ω
+
〈
S(qn − Pqn), qn

〉
Ω

=
〈
Sqn, qn

〉
Ω
= J(qn)

2 .

We also know from the proof of Theorem 5.1 that J(qn) → β(Ω) as n → ∞. It follows that

δ‖qn − Pqn‖20,Ω → 0, hence (5.9). �

Remark 5.4. Under the sufficient conditions of Theorem 5.1 for the convergence of βn →
β(Ω), the discrete eigenfunctions qn define a minimizing sequence both for the functional

J and for the Rayleigh quotient of the operator S. Therefore if there exists a convergent

subsequence, it will converge to an eigenfunction of the Schur complement operator S. If

σ0 = β(Ω)2 is below the essential spectrum of S, hence of finite multiplicity, the previous

theorem shows that every subsequence of qn has a subsequence converging to an eigenfunc-

tion of S associated with σ0. If, however, σ0 is not an eigenvalue, then the sequence qn has

no subsequence that converges in L2(Ω).

5.3. Consequences for the convergence of the discrete inf-sup constant in the p and h
versions of the finite element method. The sufficient conditions (5.4) for the convergence

βn → β(Ω) given in Theorem 5.1 rely on the estimates of the quantities defined by (5.1)

and (5.2). Such estimates are known to hold in many finite element methods, and we can

therefore concretize the convergence theorem for these methods.

Let us assume first that the spaces Xn and Mn correspond to an h version finite element

method. That is, they consist of piecewise polynomials of a fixed degree on meshes with

meshsize tending to zero. We consider the case where velocity and pressure variables are

discretized on two different families of meshes indexed by n ∈ N. The inclusions Xn ⊂
H1

0 (Ω)
d and Mn ⊂ L2

◦(Ω) mean that Xn consists of globally continuous functions, whereas

the elements of Mn may be discontinuous. For the mesh of the velocity space Xn, we define

hXn
as the diameter of the largest element, and for the mesh of the pressure space Mn we

define hMn
as the smallest radius of the inscribed sphere of any element. Both hXn

and hMn

tend to zero as n → ∞.
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Under very mild conditions on local uniformity and shape regularity of the meshes one

has standard finite element approximation properties and inverse estimates that imply the

existence of a constant C independent of n such that, for some s ∈ (0, 1
2
),

(5.10) ∀u ∈ (H1+s(Ω) ∩H1
0 (Ω))

d, inf
v∈Xn

|u− v |1,Ω ≤ C (hXn
)s‖u‖1+s,Ω

and

(5.11) ∀ q ∈ Mn, ‖q‖s,Ω ≤ C (hMn
)−s ‖q‖0,Ω .

The approximation estimate (5.10) can be deduced by Hilbert space interpolation from the

O(hXn
) approximation property for u ∈ H2(Ω)d that can be found in many textbooks on the

mathematical theory of finite elements, see for example [7, 10]. The inverse estimate (5.11),

which we need for discontinuous elements, is proved in [19] under very general hypotheses

on the meshes that include highly anisotropic elements.

Thus if the estimates (5.10) and (5.11) are satisfied, we compare (5.10) with (5.2) and

(5.11) with (5.1) and conclude εn,s ≤ Ch
s

Xn
and ηn,s ≤ Ch−s

Mn
. In this case, Theorem 5.1

has the following corollary.

Corollary 5.5. In the h version of the finite element method,

(5.12) if lim
n→∞

hXn

hMn

= 0 then lim
n→∞

βn = β(Ω) .

Second, we consider spectral methods or the p version of the finite element method. Here

the meshes are fixed, and the spaces Xn and Mn consist of (piecewise) polynomials of

degrees pXn
and pMn

, respectively, tending to infinity as n → ∞. Then the typical approxi-

mation properties and inverse estimates are

(5.13) ∀u ∈ (H1+s(Ω) ∩H1
0 (Ω))

d, inf
v∈Xn

|u− v |1,Ω ≤ C (pXn
)−s ‖u‖1+s,Ω

and

(5.14) ∀ q ∈ Mn, ‖q‖s,Ω ≤ C (pMn
)2s ‖q‖0,Ω .

Again, the approximation property for continuous elements (5.13) is standard, see [3]. The

inverse estimate (5.14) under very general assumptions on the meshes is proved in [16],

where one can even find corresponding estimates for the hp version of the finite element

method.

Now if the estimates (5.13) and (5.14) are satisfied, we find εn,s ≤ Cp−s
Xn

and ηn,s ≤
Cp2sMn

, and in this case we obtain the second corollary of Theorem 5.1.

Corollary 5.6. In the p version of the finite element method and in spectral methods,

(5.15) if lim
n→∞

(pMn
)2

pXn

= 0 then lim
n→∞

βn = β(Ω) .

Remark 5.7. While the conditions (5.12) and (5.15) are sufficient for the convergence of

the discrete inf-sup constants to the exact inf-sup constant of the domain, they might not be

necessary. In Section 5.4 this question is studied via concrete examples of finite element

approximations. It turns out that for the h version there are examples where (5.12) is not

satisfied and the βn converge to arbitrarily given small positive values. On the other hand,
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for the p version we only have numerical observations, strongly indicating that the condition

(5.15) on the degrees is too restrictive: We only found situations where either the βn con-

verge to 0 (no discrete LBB condition) or else they converge to β(Ω). The optimal condition

instead of (5.15) may be conjectured to be

lim sup
n→∞

pMn

pXn

< 1 .

5.4. Examples of finite element approximations. We address two examples: the first one

is devoted to the Scott-Vogelius triangular element in the h-version, and the second one to

the p-version (or spectral discretization) on rectangular elements.

5.4.1. Scott-Vogelius P4–P3
dc triangular element. Let T be a triangulation of the Lipschitz

polygonal domain Ω. We denote by hT the largest diameter of its elements. For any node

x of T , let K1, . . . , KJ be the triangles of T that have x as vertex, ordered so that Kj and

Kj+1 have a common edge for all j = 1, . . . , J−1. Let θj be the opening of Kj at its vertex

x. The regularity index at x is defined as

(5.16) R(x) = max
j=1,...,J−1

|θj + θj+1 − π| .

If R(x) = 0, x is said singular. Note that any interior singular point satisfies J = 4 and the

edges to which x belongs are contained in two lines. We also denote

(5.17) R(T ) = min
x node of T

R(x).

Let us pick a quasiuniform family of triangulations (Tn)n and choose the discrete P4–P3
dc

spaces (continuous piecewise polynomials of (total) degree 4 for velocities, discontinuous

piecewise polynomials of degree 3 for pressures):

(5.18)

{
Xn = {v ∈ H1

0 (Ω)
2, v

∣∣
K
∈ P4(K)2 for all K ∈ Tn},

Mn = {q ∈ L2
◦(Ω), q

∣∣
K
∈ P3(K) for all K ∈ Tn}.

The result of [23, Th.5.2] provides the following implication

(5.19)
(
∃δ > 0 such that ∀n, R(Tn) ≥ δ

)
=⇒

(
∃β⋆ > 0 such that ∀n, βn ≥ β⋆

)
.

However this implication does not guarantee the convergence of βn to β(Ω). We now show

that convergence to a value lower than β(Ω) may occur.

Proposition 5.8. Let Ω be a Lipschitz polygonal domain. There exists β0 > 0 such that

for all β∞ ∈ (0, β0] the following property holds: There exists a sequence of quasiuniform

triangulations (Tn)n such that hTn tends to 0 and the inf-sup constant βn associated with the

spaces Xn and Mn given by (5.18) converges to β∞ as n tends to ∞.

Proof. We mesh Ω by a finite number of quadrilaterals Q that are images of the unit square

Q̂ = (0, 1)2 under bi-affine diffeomorphisms and denote by Q1 this first mesh. For n ≥ 2
we define the quadrangular mesh Qn as the refinement of Q1 obtained by the images of the

meshes associated with the grid {0, 1
n
, 2
n
, . . . , 1}2 of Q̂. Each element Q of Qn is itself bi-

affinely diffeomorphic to Q̂. For a parameter b ∈ [0, 1
2
) and each element Q of Qn we define

the interior point aQ(b) as the image of (1
2
, 1
2
+ b). If b = 0, aQ(b) is the center of Q. Then
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we associate with the four edges e of Q the four triangles having e as an edge and aQ(b) as

a vertex. Choosing b = 1
4
, for instance, we define in this way the triangular mesh T 0

n and we

can check that the left-hand condition of (5.19) for the sequence (T 0
n )n is satisfied. Then the

right-hand condition of (5.19) defines β⋆ and we take β0 = β⋆. Let us choose β∞ ∈ (0, β0].
In a second step, we pick one element Qn in each quadrangular mesh Qn. We consider

another parameter a ∈ (−1
2
, 1
2
) and the interior point aQn

(a). The triangular mesh Tn(a)

is obtained by the method above with the interior point aQn
(a) for Qn, and aQ(

1
4
) for the

other quadrilaterals Q of Qn. Let βn(a) be the associated inf-sup constant. It is easy to see

that it is a continuous function of a. Since βn(0) = 0 (because the node aQn
(0) is singular)

and βn(
1
4
) ≥ β0, there exists an ∈ (0, 1

4
) such that βn(an) = β∞. Choosing Tn = Tn(an)

proves the proposition. �
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FIGURE 3. Meshes of Ω = (0, 4)× (0, 1) for a = −0.1 and b = 0.4 (left).

βn(a) for discrete spaces (5.18) versus a ∈ (−0.5, 0.5) on a one-element

mesh of the square and on two meshes of the rectangle (right)

We illustrate this proof by the example of Ω as the rectangle (0, 4)×(0, 1). In this case, we

know [12, Section 5.1] that β(Ω)2 is an isolated eigenvalue of the Cosserat operator, and the

most precise computations give a value of β(Ω) ≃ 0.218444. In our computations with the

Scott-Vogelius P4–P3
dc element, the quadrangular meshes consist of squares, specifically

4× 1, 8× 2, 12× 3, and 24× 6, see Figure 3 (left). The general “decentering” parameter b
is chosen as 0.4 and the special parameter a is running from −0.49 to 0.49 by steps of 0.01.

We have computed with the code FreeFem++ [20] the lowest eigenvalues σj , j = 0, 1, . . .
of the discrete Stokes system (5.8). The first one σ0 is always 0 and, as already mentioned

in Section 5.2, the square root of σ1 equals the inf-sup constant βn of the discretization.

In Figure 3 (right) we observe a quasi-constant value for βn(a) when |a| lies between 0.35
and 0.48. This value is a good approximation of the inf-sup constant β(Ω). Our computa-

tions approach the exact value from below, see Figure 3 (right). For |a| less that 0.3, we
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observe a linear behavior of βn(a) as the central node aQn
(a) approaches the center (sin-

gular point), that is βn(a) behaves as a multiple of the regularity index (5.16) at aQn
(a).

Interestingly, the same behavior with a very similar proportionality constant can already be

observed on the one-element square mesh.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−6

−5

−4

−3

−2

−1

0

 

 

mesh 1x1
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FIGURE 4. βn(a) for discrete spaces (5.18) versus a ∈ (−0.5, 0.5) on four

meshes of the rectangle: Difference with the finer mesh (left) and difference

with β(Ω) (right) in log10 scale.

In Figure 4 we plot the (relative) difference between the constants β when the mesh grows

finer (left) and the difference with β(Ω) ≃ 0.218444 (right). More precisely, denoting by

βn the inf-sup constant associated with the mesh 4n × n, n = 1, 2, 3, 6, and β� the inf-

sup constant of the one-element square mesh, we plot a 7→ log10{(β6(a) − βn(a))/β6(a)},

n = �, 1, 2, 3 on the left part of Figure 4, and a 7→ log10(β(Ω)− βn(a)), n = 1, 2, 3, 6, on

the right part of Figure 4.

5.4.2. p-version on rectangular elements. For one spectral element in dimension 2, i.e. for

the square Ω = (−1, 1)2 discretized by means of the space Qp of polynomials with degree

≤ p with respect to each variable, we have the following results, quoted or proved in [4]: As

discrete space for velocities let us take

Xn = H1
0 (Ω)

2 ∩Q2
n, n ≥ 2 .

Then, according to the choice of the pressure space Mn there holds

(1) If Mn = Qn−1, then βn = 0.

(2) If Mn = Qn−d with a chosen d ≥ 2, then βn = O(n−1) as n → ∞.

(3) If Mn = Qn−λn with a chosen λ ∈ (0, 1), then βn ≥ β⋆ > 0.

In this paper, we have proved convergence of βn to β(Ω) if Mn = Qλn

√
n for any sequence

of positive numbers λn such that λn → 0 and λn

√
n → ∞ as n → ∞.

We have performed computations on rectangles of different aspect ratios with two meshes

T with 1× 1 or 2× 2 isometric rectangular elements. Here we use the finite element library



CONTINUITY PROPERTIES OF THE INF-SUP CONSTANT 21

Mélina++. Now we set

(5.20)

{
Xn = {v ∈ H1

0 (Ω)
2, v

∣∣
K
∈ Qn(K)2 for all K ∈ T },

Mn = {q ∈ L2
◦(Ω), q

∣∣
K
∈ Qk(K) for all K ∈ T }.

We observe

(1) If k = n− 1, then βn = 0 on the mesh 1× 1 and βn behaves as in the next point on

the mesh 2× 2.

(2) If k = n − d with d = 2, 3, then βn may display a preasymptotic convergence to

β(Ω), and eventually tends to 0 as n → ∞.

(3) If k = n/2, then βn converges to β(Ω).
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FIGURE 5. βn for discrete spaces (5.20) versus n on two meshes of the rec-

tangle (0, 2)× (0, 1).

In Figure 5, we present numerical results for the rectangle Ω = (0, 2)× (0, 1) for which

we know that β(Ω)2 is an isolated eigenvalue of the Cosserat operator, and our most precise

computations yield the approximate value 0.387262 for β(Ω).

REFERENCES
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