Standard Finite Elements and Weighted Regularization

A Rehabilitation

Martin Costabel & Monique Dauge

Institut de Recherche MAthématique de Rennes

http://www.maths.univ-rennes1.fr/~dauge

Slides of the talk given by MC in Kiel, 26 Jan. 2001 and by MD in Orsay, 15 March 2001.

Outline • Eigen-problem for Maxwell equations. "Regularization" by the interior term $(u,v) \longmapsto \int_{\Omega} s \operatorname{div} u \operatorname{div} v \operatorname{d} x.$ • Reentrant corners: Non- H^1 singularities cannot be approximated by nodal elements. • Boundary penalization: A lesson on theory vs practice $(u,v)\longmapsto \lambda\int_{\partial\Omega}(u imes n)\cdot(v imes n)\;\mathrm{d}\sigma.$ Weighted regularization: Convergence restored Convergence rates

Maxwell eigenvalue problem

Permittivity arepsilon and permeability μ . Find non-zero ω such that $\exists \; (E,H)
eq 0$

 $\begin{array}{ll} \mbox{(Maxwell)} & \left\{ \begin{array}{ll} \operatorname{rot} E - i\omega\,\mu H = 0 & \& & \operatorname{rot} H + i\omega\,\varepsilon E = 0 & \mbox{in} \ \ \Omega, \\ & E \times n = 0 & \& & H \cdot n = 0 & \mbox{on} \ \ \partial\Omega \end{array} \right. \end{array}$

(perfect conductor boundary conditions).

(1)

Homogeneous and isotropic medium: arepsilon , μ constant >0 . May assume $arepsilon=\mu=1$.

 $\operatorname{div} E = 0 \quad \& \quad \operatorname{div} H = 0$

An "electric" variational formulation: Find non-zero ω such that

 $\exists E \in H_0(\operatorname{rot}; \Omega) \setminus \{0\}$ solves $\forall E \in H_0(\operatorname{rot}; \Omega)$

$$\int_{\Omega} \operatorname{rot} E \cdot \operatorname{rot} \widetilde{E} = \omega^2 \int_{\Omega} E \cdot \widetilde{E}$$

Non-elliptic bvp: ∞ -dim. e-space for $\omega = 0$ (does not satisfy $\operatorname{div} E = 0$).

A first strategy : edge elements

The infinite dimensional eigen-space \mathfrak{E}_0 for $\omega=0$ is

 $\mathfrak{E}_0 = \{ E = \operatorname{grad} \varphi \mid \varphi \in H^1_0(\Omega) \}.$

Unless divergence-free elements are used (?), the space \mathfrak{E}_0 has an influence on any discrete scheme. The spurious modes are also approximated. If they are approximated by non-zero eigen-frequencies, they pollute the whole spectrum.

Generalized pollution is avoided by the use of *spurious free elements* (if they exist !), that is, discrete spaces where the 0 e-value is approached by exact 0.

Such elements do exist:

they are realized by the 2 generations of NEDELEC's edge elements (1980 and 1986). These discrete families are rot conforming but <u>not div conforming</u>. The compatibility conditions between two neighboring elements are obtained via <u>moments across the common edge</u>.

An alternative strategy : Nodal FEMs need Regularization The electric field E solution of the Maxwell e-value problem belongs to $X_N=\Big\{u\in L^2(\Omega)^3\,;\, ext{rot}\,u\in L^2(\Omega)^3,\,\, ext{div}\,u\in L^2(\Omega),\,\,u imes n=0 ext{ on }\partial\Omega)\Big\}.$ Reintroduce the divergence via a regularization parameter $\,s>0$, i.e. add $s \langle \operatorname{div} E, \operatorname{div} \widetilde{E} \rangle$. \Longrightarrow Variational formulation in X_N . For s>0 , find non-zero $\omega[s]$ $\exists E \in X_N \setminus \{0\}$ solves $\forall E \in X_N$ $\int_{\Omega} \operatorname{rot} E \cdot \operatorname{rot} \widetilde{E} + s \operatorname{div} E \operatorname{div} \widetilde{E} = \omega[s]^2 \int_{\Omega} E \cdot \widetilde{E}.$ The solutions ω independent of s are the Maxwell e-frequencies. Spurious eigenfrequencies: $\omega[s]^2 = s\nu$ with Dirichlet eigenvalues ν . Elliptic bvp: s=1: Laplacian; s>1: Lamé with $\mu=1,\lambda=s-2$. Coercive bilinear form; stability and convergence of FEM... However .../...

A topological barrier

Any X_N -conforming finite element space \mathfrak{X}^h_N is contained in $\mathcal{C}^0(\overline{\Omega})$

- $\implies \mathfrak{X}^h_N$ is H^1 -conforming
- \implies The solution of the Galerkin approximation in \mathfrak{X}_N^h , $E_h \in H^1(\Omega)^3$ thus to

 $H_N := X_N \cap H^1(\Omega)^3.$

Let $H^\infty_N:=\mathcal{C}^\infty(\overline\Omega)^3\cap X_N$. For $u\in H^\infty_N$ there holds

$$\int_{\Omega} |\operatorname{rot} u|^2 + |\operatorname{div} u|^2 = \int_{\Omega} |\operatorname{grad} u|^2.$$

Thus the closure \overline{H}_N^∞ of H_N^∞ for the norm $(\|u\|^2 + \|\operatorname{rot} u\|^2 + \|\operatorname{div} u\|^2)^{1/2}$ is contained in H_N . In fact

$$\overline{H}_N^\infty = H_N$$

 $\implies E_h$ converges to $E_{\mathrm{wr}} \in H_N$.

And $E_{
m wr}$ is wrong, because for non-convex polyhedra $H_N
eq X_N$.

Variational singularities derive from potentials

Any $\operatorname{grad} \varphi$ with $\varphi \in D(\Delta^{\operatorname{Dir}})$ belongs to X_N , where

 $D(\Delta^{\mathrm{Dir}}) = ig\{ arphi \in H^1_0(\Omega) \; ; \; \; \Delta arphi \in L^2(\Omega) ig\}.$

For non-convex polyhedra, $\exists K_{\text{Dir}} \neq \{0\}$ such that

$$ig(H^2 \cap H^1_0(\Omega)ig) \oplus K_{\mathrm{Dir}} = D(\Delta^{\mathrm{Dir}}).$$

There holds

 $X_N = H_N \oplus \operatorname{grad}\left(K_{\operatorname{Dir}}\right)$

3D : For non-convex polyhedra, $\dim K_{\mathrm{Dir}} = +\infty$

2D : For non-convex polygons, dim $K_{\text{Dir}} = \#$ nonconvex corners

Boundary penalization

Boundary-penalized bilinear form $a[s, \lambda]$ defined on W as

$$\int_{\Omega} \operatorname{rot} E \cdot \operatorname{rot} \widetilde{E} + s \operatorname{div} E \operatorname{div} \widetilde{E} + \lambda \int_{\partial \Omega} (E imes n) \cdot (\widetilde{E} imes n) \; ,$$

with the variational space

$$W = \left\{ E \in H(\mathrm{rot}) \cap H(\mathrm{div}) \ ; \ \ E imes n ert_{\partial\Omega} \in L^2(\partial\Omega)
ight\}.$$

Theorem [CoDa'98] : Ω Lipschitz domain: $\mathcal{C}^{\infty}(\overline{\Omega})^3$ is dense in W.

Spurious eigenfrequencies (the same): $\omega[s, \lambda]^2 = s \nu$ with Dirichlet eigenvalues ν .

The solutions $\omega[s, \lambda]$ independent of s tend to the Maxwell e-frequencies

$$\left|\omega[s, \lambda] - \omega[s] \right| = \mathcal{O}(\frac{1}{\lambda})$$
 as $\lambda \to \infty$

However, convergence rates... are not known, and practical convergence is very poor.

Boundary penalization : non promising results

Comput. of 1^{st} singularity with \mathbb{P}_2 elements in 4 nested regular triangular meshes. Quadratic errors and convergence rates for s = 1 and λ from 2^{-5} to 2^{10} .

Weighted regularization : The idea

Regularize the divergence via a term $s \langle \operatorname{div} E, \operatorname{div} \widetilde{E} \rangle_{Y}$ with an intermediate space

 $L^2(\Omega) \subset Y \subset H^{-1}(\Omega).$

The variational space is then

$$X_N[Y] = ig\{ E \in H_0(\mathrm{rot}) \mid \mathrm{div}\, E \in Y ig\}.$$

We take Y as a weighted L^2 space:

$$\langle \operatorname{div} E, \operatorname{div} \widetilde{E}
angle_Y = \int_\Omega \sigma \, \operatorname{div} E \, \operatorname{div} \widetilde{E} \, \mathrm{d}x$$

where

$$\sigma(x)=d(x)^{lpha}$$
 with $0\leq lpha\leq 2$

with $d(x) = \operatorname{dist}(x, \mathfrak{S})$ the distance function to the set \mathfrak{S} of

non-convex corners for a polygon and **non-convex edges** for a polyhedron.

Weighted penalization : A density result

Define the Laplace-Dirichlet operator $\,\Delta^{
m Dir}[Y]\,$ as

Theorem [CoDa'00]:
(i) Any element u ∈ X_N[Y] can be decomposed into the sum

u = w + grad φ, with w ∈ H_N and φ ∈ D(Δ^{Dir}[Y]).

(ii) If H² ∩ H¹₀(Ω) is dense in D(Δ^{Dir}[Y]) for the graph norm, then H_N is dense in X_N[Y].
(iii) H² ∩ H¹₀(Ω) is closed in D(Δ^{Dir}[Y]) if and only if H_N is closed in X_N[Y].

(iv) $\mathcal{D}(\Delta^{\mathrm{Dir}}[Y])$ is contained in $H^2(\Omega)$ if and only if $X_N[Y] = H_N$.

How to choose the weight for a polyhedron

Edges e , opening angles ω_e .

Corners c , Laplace Dirichlet singularity exponents λ_c^{Dir} .

With $d(x) = dist(x, \mathfrak{S})$ the distance to the set \mathfrak{S} of non-convex edges, the weight σ is defined as (we set $\alpha = 2\gamma$)

 $\sigma(x)=d(x)^{2\gamma}$ with $0\leq\gamma\leq 1$

When γ is close enough to 1, the domain $\mathcal{D}(\Delta^{\mathrm{Dir}}[Y])$ is a weighted space $V_{\gamma}^2(\Omega)$ of KONDRAT'EV type and the smooth functions are dense :

Theorem [CoDa'00] :If $\max_{e,c} \{1 - \frac{\pi}{\omega_e}, \frac{1}{2} - \lambda_c^{\text{Dir}}\} < \gamma \leq 1$ then H_N is dense in $X_N[Y]$ \implies Any Galerkin method converges.

Approximation properties of the FEM spaces

The Maxwell eigenvectors E admit the following splitting

 $E = w + \operatorname{grad} arphi, \quad ext{with} \ \ w \in H_N \ \ ext{and} \ \ arphi \in \mathcal{D}(\Delta^{\operatorname{Dir}}[Y]) \,.$

In fact, w belongs to a space $H_N^{\mathrm{Neu}} \subset H_N$ where each component has the same regularity as solutions of the Neumann problem for Δ with a L^2 rhs and φ belongs to a weighted space $K_{\mathrm{Dir}}^{\infty}$ determined by the only Dirichlet singularity exponents.

Assumptions on the FEM spaces $\mathfrak{X}_N^h\colon \exists au>0$

$$(\mathfrak{A}_1) \hspace{0.1 cm} orall w \in H_N^{\mathrm{Neu}}, \hspace{0.1 cm} \inf_{w_h \in \mathfrak{X}_N^h} \left\|w - w_h
ight\|_{H^1} \leq C \hspace{0.1 cm} h^ au$$

 $(\mathfrak{A}_2) \ \exists \Phi_h : \operatorname{grad} \Phi_h \subset \mathfrak{X}^h_N, \text{ so that } \forall \varphi \in K^\infty_{\operatorname{Dir}}, \ \inf_{\varphi_h \in \Phi_h} \left\| \varphi - \varphi_h \right\|_{V^2_\gamma} \leq C \, h^\tau$

Theorem [CoDa'01] : Estimate between e-vector E and e-vector $E_h \in \mathfrak{X}_N^h$:

$$\|E-E_h\|_{X_N[Y]} \leq C(E) h^{oldsymbol{ au}}$$

Convergence rates in 2D

The FEM spaces \mathfrak{X}_N^h of nodal elements originating from

- \mathbb{Q}_q rectangles for $q\geq 3$,
- \mathbb{P}_q triangles for $q \geq 4$ ($q \geq 2$ on some triangulations),

on a h -uniform mesh, satisfy Assumptions (\mathfrak{A}_1) – (\mathfrak{A}_2) as soon as γ satisfies

$$\max_e \{1 - \tfrac{\pi}{\omega_e}\} < \gamma \leq 1$$

for any au such that

$$au < \min\left\{rac{\pi}{\omega_0} - 1 + \gamma \;,\; rac{\pi}{\omega_1} - 1
ight\}$$

where ω_0 is the largest non-convex angle and ω_1 the largest convex angle.

For the L-shaped domain, we obtain

$$au < \gamma - rac{1}{3}$$
 , $\ \$ and for the optimal value $\gamma = 1$, $au < rac{2}{3}$.

Illustration: Maxwell eigenvalues in a polygon

E-modes $(\Lambda[s], u[s])$ of the parameter-dependent problems associated with a[s]

$$s \geq 0 \hspace{0.2cm} : \hspace{0.2cm} a[s](u,v) \hspace{0.2cm} = \hspace{0.2cm} \int_{\Omega} (\operatorname{rot} u \hspace{0.2cm} \operatorname{rot} v + s \hspace{0.2cm} r^{lpha} \hspace{0.2cm} \operatorname{div} u \hspace{0.2cm} \operatorname{div} v) \hspace{0.2cm} \mathrm{d} x.$$

Here $\operatorname{rot} u = \partial_1 u_2 - \partial_2 u_1$ and $\operatorname{div} u = \partial_1 u_1 + \partial_2 u_2$.

The e-modes $\left(\Lambda[s], u[s]
ight)$ in X_N can be organized in 2 types

- 1) $\Lambda[s] \underline{independent}$ of s: they are the Maxwell e-values. $(\Lambda[s], u[s]) = (\nu, \overrightarrow{rot}\varphi)$ with the Neumann e-modes (ν, φ) of $-\Delta$.
- 2) $\Lambda[s] \underline{linear \ dependent}$ on s: they are the spurious e-values. $(\Lambda[s], u[s]) = (s\nu, \overrightarrow{\operatorname{grad}}\varphi)$ with the Dirichlet e-modes (ν, φ) of the operator

$$-r^{\alpha/2}\Delta r^{\alpha/2}.$$

Computations

 Ω is the L -shape domain : $[0.5,1] imes [0.5,1] \setminus [0.75,1] imes [0.75,1]$.

Computation of the first 15 eigenvalues and eigenvectors $\Lambda[s]$ for s=[2:100], lpha=0,1,2, q=1,2,3,4

with the FEM library MÉLINA by D. MARTIN.

The computed eigenvalues are sorted depending on whether

 $\frac{{{{\left\| \operatorname{rot} u \right\|}^2}}}{{{s}{{{\left\| {{r^{\alpha /2}}\operatorname{div} u} \right\|}^2}}}}$

is $\geq \rho$ or $\leq \rho^{-1}$ with a fixed $\rho \geq 1$.

Weighted Regularization of Maxwell Equations

Weighted Regularization of Maxwell Equations

Weighted Regularization of Maxwell Equations