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Outline

• Eigen-problem for Maxwell equations. “Regularization” by the interior term

(u, v) �−→
∫
Ω

s div u div v dx.

• Reentrant corners: Non- H1 singularities cannot be approximated by

nodal elements.

• Boundary penalization: A lesson on theory vs practice

(u, v) �−→ λ

∫
∂Ω

(u × n) · (v × n) dσ.

• Weighted regularization: Convergence restored

• Convergence rates
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Maxwell eigenvalue problem

Permittivity ε and permeability µ . Find non-zero ω such that ∃ (E,H) �= 0

(Maxwell)


 rotE − iω µH = 0 & rotH + iω εE = 0 in Ω,

E × n = 0 & H · n = 0 on ∂Ω

(perfect conductor boundary conditions).

Homogeneous and isotropic medium: ε , µ constant > 0 . May assume ε = µ = 1 .

=⇒ divE = 0 & divH = 0

An “electric" variational formulation: Find non-zero ω such that

∃ E ∈ H0(rot ; Ω) \ {0} solves ∀Ẽ ∈ H0(rot ; Ω)

(1)
∫
Ω

rotE · rot Ẽ = ω2

∫
Ω

E · Ẽ
z 

Non-elliptic bvp: ∞ -dim. e-space for ω = 0 (does not satisfy divE = 0 ).
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A first strategy : edge elements

The infinite dimensional eigen-space E0 for ω = 0 is

E0 = {E = gradϕ | ϕ ∈ H1
0(Ω)}.

Unless divergence-free elements are used (?), the space E0 has an influence on any

discrete scheme. The spurious modes are also approximated. If they are approximated

by non-zero eigen-frequencies, they pollute the whole spectrum.

Generalized pollution is avoided by the use of spurious free elements (if they exist !),

that is, discrete spaces where the 0 e-value is approached by exact 0 .

Such elements do exist:

they are realized by the 2 generations of N EDELEC’s edge elements (1980 and 1986).

These discrete families are rot conforming but not div conforming.

The compatibility conditions between two neighboring elements are obtained via

moments across the common edge.
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An alternative strategy : Nodal FEMs need Regularization

The electric field E solution of the Maxwell e-value problem belongs to

XN =
{
u ∈ L2(Ω)3 ; rotu ∈ L2(Ω)3, div u ∈ L2(Ω), u × n = 0 on ∂Ω)

}
.

Reintroduce the divergence via a regularization parameter s > 0 , i.e. add

s〈divE,div Ẽ〉.

=⇒ Variational formulation in XN . For s > 0 , find non-zero ω[s]

∃ E ∈ XN \ {0} solves ∀Ẽ ∈ XN∫
Ω

rotE · rot Ẽ + sdivE div Ẽ = ω[s]2
∫
Ω

E · Ẽ .

The solutions ω independent of s are the Maxwell e-frequencies.

Spurious eigenfrequencies: ω[s]2 = sν with Dirichlet eigenvalues ν .

Elliptic bvp: s = 1 : Laplacian; s > 1 : Lam é with µ = 1, λ = s − 2 .

Coercive bilinear form; stability and convergence of FEM. . . However . . . /. . .
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A topological barrier

Any XN -conforming finite element space Xh
N is contained in C0(Ω)

=⇒ Xh
N is H1 -conforming

=⇒ The solution of the Galerkin approximation in Xh
N , Eh ∈ H1(Ω)3 thus to

HN := XN ∩ H1(Ω)3.

Let H∞
N := C∞(Ω)3 ∩ XN . For u ∈ H∞

N there holds∫
Ω

| rotu|2 + | div u|2 =
∫
Ω

| gradu|2.

Thus the closure H∞
N of H∞

N for the norm
(‖u‖2 + ‖ rotu‖2 + ‖ div u‖2)1/2

is

contained in HN . In fact

H∞
N = HN

=⇒ Eh converges to Ewr ∈ HN .

And Ewr is wrong, because for non-convex polyhedra HN �= XN .
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The standard nodal “approximation” of the first singularity

The exact solution
(
grad(r

2
3 sin 2θ

3
)
)
1

. Computation with Q3 elements.

Non- H1 singularities are not approximated.
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Variational singularities derive from potentials

Any gradϕ with ϕ ∈ D(∆Dir) belongs to XN , where

D(∆Dir) =
{
ϕ ∈ H1

0(Ω) ; ∆ϕ ∈ L2(Ω)
}
.

For non-convex polyhedra, ∃KDir �= {0} such that(
H2 ∩ H1

0(Ω)
) ⊕ KDir = D(∆Dir).

There holds

XN = HN ⊕ grad
(
KDir

)
3D : For non-convex polyhedra, dimKDir = +∞
2D : For non-convex polygons, dimKDir = #nonconvex corners
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Boundary penalization

Boundary-penalized bilinear form a[s, λ] defined on W as∫
Ω

rotE · rot Ẽ + sdivE div Ẽ + λ

∫
∂Ω

(E × n) · (Ẽ × n) ,

with the variational space

W =
{
E ∈ H(rot) ∩ H(div) ; E × n|∂Ω ∈ L2(∂Ω)

}
.

Theorem [CoDa’98] : Ω Lipschitz domain: C∞(Ω)3 is dense in W .

Spurious eigenfrequencies (the same): ω[s, λ]2 = sν with Dirichlet eigenvalues ν .

The solutions ω[s, λ] independent of s tend to the Maxwell e-frequencies∣∣ω[s, λ] − ω[s]
∣∣ = O( 1

λ
) as λ → ∞

However, convergence rates. . . are not known, and practical convergence is very poor.
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Boundary penalization : non promising results

Comput. of 1st singularity with P2 elements in 4 nested regular triangular meshes.

Quadratic errors and convergence rates for s = 1 and λ from 2−5 to 210 .

l2norm2
energy 

0.0312 0.25 2 16 128 1024
10

-2

10
-1

10
0

10
1

k = 1

l2norm    
sq(energy)

0.0312 0.25 2 16 128 1024

-0.2

-0.1

0

0.1

0.2

0.3
k = 1,   degree = 2

Weighted Regularization of Maxwell Equations 9



✬

✫

✩

✪

Weighted regularization : The idea

Regularize the divergence via a term s〈divE,div Ẽ〉
Y

with an intermediate space

L2(Ω) ⊂ Y ⊂ H−1(Ω).

The variational space is then

XN [Y ] =
{
E ∈ H0(rot) | divE ∈ Y

}
.

We take Y as a weighted L2 space:

〈divE,div Ẽ〉
Y
=

∫
Ω

σ divE div Ẽ dx

where

σ(x) = d(x)α with 0 ≤ α ≤ 2

with d(x) = dist(x,S) the distance function to the set S of

non-convex corners for a polygon and non-convex edges for a polyhedron.
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Weighted penalization : A density result

Define the Laplace-Dirichlet operator ∆Dir[Y ] as

∆Dir[Y ] : D(∆Dir[Y ]) :=
{
ϕ ∈ H1

0 (Ω) | ∆ϕ ∈ Y
} −→ Y

ϕ �−→ ∆ϕ.

Theorem [CoDa’00] :

(i) Any element u ∈ XN [Y ] can be decomposed into the sum

u = w + gradϕ, with w ∈ HN and ϕ ∈ D(∆Dir[Y ]) .

(ii) If H2 ∩ H1
0(Ω) is dense in D(∆Dir[Y ]) for the graph norm, then HN is dense

in XN [Y ] .

(iii) H2 ∩ H1
0 (Ω) is closed in D(∆Dir[Y ]) if and only if HN is closed in XN [Y ] .

(iv) D(∆Dir[Y ]) is contained in H2(Ω) if and only if XN [Y ] = HN .
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How to choose the weight for a polyhedron

Edges e , opening angles ωe .

Corners c , Laplace Dirichlet singularity exponents λDir
c .

With d(x) = dist(x,S) the distance to the set S of non-convex edges, the weight

σ is defined as (we set α = 2γ )

σ(x) = d(x)2γ with 0 ≤ γ ≤ 1

When γ is close enough to 1 , the domain D(∆Dir[Y ]) is a weighted space V 2
γ (Ω)

of K ONDRAT’EV type and the smooth functions are dense :

Theorem [CoDa’00] :

If max
e,c

{1 − π
ωe

, 1
2

− λDir
c } < γ ≤ 1

then HN is dense in XN [Y ]

=⇒ Any Galerkin method converges.
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Approximation properties of the FEM spaces

The Maxwell eigenvectors E admit the following splitting

E = w + gradϕ, with w ∈ HN and ϕ ∈ D(∆Dir[Y ]) .

In fact, w belongs to a space HNeu
N ⊂ HN where each component has the same

regularity as solutions of the Neumann problem for ∆ with a L2 rhs and ϕ belongs

to a weighted space K∞
Dir determined by the only Dirichlet singularity exponents.

Assumptions on the FEM spaces Xh
N : ∃τ > 0

(A1) ∀w ∈ HNeu
N , inf

wh∈Xh
N

‖w − wh‖
H1

≤ C hτ

(A2) ∃Φh : gradΦh ⊂ Xh
N , so that ∀ϕ ∈ K∞

Dir, inf
ϕh∈Φh

‖ϕ−ϕh‖
V 2

γ

≤ C hτ

Theorem [CoDa’01] : Estimate between e-vector E and e-vector Eh ∈ Xh
N :

‖E − Eh‖
XN [Y ]

≤ C(E)hτ
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Convergence rates in 2D

The FEM spaces Xh
N of nodal elements originating from

• Qq rectangles for q ≥ 3 ,

• Pq triangles for q ≥ 4 (q ≥ 2 on some triangulations),

on a h -uniform mesh, satisfy Assumptions (A1) – (A2) as soon as γ satisfies

max
e

{1 − π
ωe

} < γ ≤ 1

for any τ such that

τ < min
{

π

ω0

− 1 + γ ,
π

ω1

− 1
}

where ω0 is the largest non-convex angle and ω1 the largest convex angle.

For the L-shaped domain, we obtain

τ < γ − 1
3

, and for the optimal value γ = 1 , τ < 2
3

.

Weighted Regularization of Maxwell Equations 14



✬

✫

✩

✪

Illustration: Maxwell eigenvalues in a polygon

E-modes
(
Λ[s], u[s]

)
of the parameter-dependent problems associated with a[s]

s ≥ 0 : a[s](u, v) =
∫
Ω

(
rotu rot v + s rα div u div v

)
dx.

Here rotu = ∂1u2 − ∂2u1 and div u = ∂1u1 + ∂2u2 .

The e-modes
(
Λ[s], u[s]

)
in XN can be organized in 2 types

1) Λ[s] independent of s : they are the Maxwell e-values.(
Λ[s], u[s]

)
=

(
ν,

−→rotϕ)
with the Neumann e-modes

(
ν, ϕ

)
of −∆ .

2) Λ[s] linear dependent on s : they are the spurious e-values.(
Λ[s], u[s]

)
=

(
sν,

−−→gradϕ
)

with the Dirichlet e-modes
(
ν, ϕ

)
of the operator

−rα/2∆ rα/2.
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Computations

Ω is the L -shape domain : [0.5, 1] × [0.5, 1] \ [0.75, 1] × [0.75, 1] .

Computation of the first 15 eigenvalues and

eigenvectors Λ[s] for

s = [2 : 100] ,

α = 0, 1, 2 ,

q = 1, 2, 3, 4

with the FEM library M ÉLINA by D. MARTIN.

The computed eigenvalues are sorted de-

pending on whether

‖ rotu‖2

s‖rα/2 div u‖2

is ≥ ρ or ≤ ρ−1 with a fixed ρ ≥ 1 .
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Legend

For the next 8 figures.

In Cyan, the Laplace-Neumann eigenvalues, which coincide for 2D domains with

Maxwell eigenvalues.

In Blue, the circles represent the computed Λ[s] with rot dominant eigenvectors.

In Red, the lines join the computed Λ[s] with div dominant eigenvectors.

Abscissa : s

Ordinate : Λ[s] .
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q = 1 , α = 0
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q = 4 , α = 0
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q = 1 , α = 1
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q = 4 , α = 1
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q = 1 , α = 2
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q = 2 , α = 2
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q = 3 , α = 2
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q = 4 , α = 2
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