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Abstract. We investigate time harmonic Maxwell equations in heterogeneous media,
where the permeability µ and the permittivity ε are piecewise constant. The associated
boundary value problem can be interpreted as a transmission problem. In a very natural way
the interfaces can have edges and corners. We give a detailed description of the edge and
corner singularities of the electromagnetic fields.

Introduction

Physical objects interacting with electromagnetic waves not only tend to have corners and
edges, but are frequently composed of several materials with different electric and magnetic prop-
erties. The electromagnetic fields then have singularities not only at the exterior corners and edges,
but also at the singular points of the interfaces between the different materials.

We show how these singularities can be analyzed using the classical Kondrat’ev method
[13]. In the paper [8], we studied the singularities at corners and edges of a homogeneous material.
Here we continue this investigation of the singularities of solutions of the time-harmonic Maxwell
equations by studying the case of piecewise constant coefficients ε (electric permittivity) and µ
(magnetic permeability). For the case of two materials separated by a plane, see also A. Bonnet-
BenDhia, C. Hazard, S. Lohrengel [5].

We try to describe as explicitly as possible the principal parts of all singular functions of the
electric and magnetic fields. We show that all the singular functions can be obtained from those of
associated transmission problems for the scalar Laplace operator. Thus one can benefit from the
many results that are available on this subject, see [10, 16, 15, 19].

In the case of a homogeneous body [8], the singular functions are generated by those of the
Dirichlet and Neumann boundary value problems for the Laplacian. In our heterogeneous case, we
also have to consider two problems for the Laplacian. They correspond to the equations for the
electrostatic and the magnetostatic potentials. The electrostatic problem is an interface problem
for the Laplace operator with exterior Dirichlet boundary conditions and jumps of the normal
derivatives at the interfaces determined by the discontinuities of the coefficient ε (operator ∆Dir

ε ,
see (1.7) and Notation 3.3). For the magnetostatic problem, we have to consider the operator
∆Neu
µ (see (1.8) and Notation 3.3) with Neumann boundary conditions and jumps determined by

the discontinuities of the coefficient µ .

As in the homogeneous case [8], we find three types of singularities (type 1, 2 and 3). There
may be strong singularities that are not even in H1 . We show that these are of type 1, i.e.
gradients of singular functions of the corresponding static problems.

For the singular functions of type 2, there is a difference to the homogeneous case: In [8], we
obtained an explicit formula (a differential operator, see [8, Lemma 7.5]) that gives the Maxwell
singularity in terms of the singularity of the opposite static potential problem. In our heterogeneous



case, the exponent of the singularity is still equal to an exponent of the opposite static potential
problem. For the angular part of the singular function, however, we find an additional term, see
(5.3), that involves the solution of an inhomogeneous scalar interface problem. Thus the type 2
singularities of the electric fields have the same exponents as the magnetostatic potentials, but their
angular parts contain a term corresponding to an electrostatic field generated by interface charges
depending on the jumps [εµ] of the index of refraction.

Another important difference to the homogeneous case is that the regularity for the interface
problems can be much lower, even with regular data. Thus, in the homogeneous case, one has
at least H1/2 regularity for Lipschitz domains [6] and H1 regularity for convex domains [20].
Here, we find only 0 as a limit for the regularity. Thus for any s > 0 there are examples where
the solution is not in Hs . If there are only two materials the lower limit of regularity is 1

4 for
arbitrary polyhedra and 1

2 for convex domains.

For the two-dimensional case (which governs also the edge singularities in dimension 3 ), one
has simple formulas in the homogeneous case: They show that the strongest singularity is of type
1 and that the lower limit of regularity is π

ω if ω ∈ (0, 2π) is the largest opening angle. This
holds for both the electric and the magnetic field.

In the heterogeneous case, due to the different behaviors of the coefficients ε and µ , the
electric and magnetic fields will have, in general, different regularities. As usual their regularity is
limited by the leading singularity. If this leading singularity is of type 1, the regularity is s − 1 ,
with s the regularity of the corresponding static problem. If not, the leading singularity is of
type 2, and the regularity is the same as the regularity of the opposite static problem. In the two-
dimensional homogeneous case, the second possibility never happens, while in the heterogeneous
case, there are cases where the leading singularity is not of type 1, but of type 2.

Let us give an example. In a typical case of several dielectric materials (three are sufficient)
with strongly varying ε , but constant µ , in a convex polygon with largest opening ω , one has
H2+γ regularity for the magnetostatic potential, with γ > 0 any number < π

ω − 1 . For the
electrostatic potential one may have only H1+δ regularity with any δ > 0 . Thus the type 1
singularity for the magnetic field has regularity H1+γ , compared to the H1+δ regularity for the
type 2 singularity. It is easy to have δ < γ (take three adjacent sectors of opening π

4 and ε equal
to 1 in the exterior sectors and to 100 in the middle sector: then γ = 0.3333 and δ = 0.1793 ).
In such a situation, the electric field has only Hδ regularity (type 1) while the magnetic field has
H1+δ regularity. Such a difference of 1 between these two regularities is the maximum possible.
(See also Remark 8.2 for an example where γ = +∞ and δ is close to 0 .)

In section 1, we recall the regularized variational formulation of Maxwell’s equations for het-
erogeneous materials. We define the two associated scalar potential operators ∆Dir

ε and ∆Neu
µ .

In section 2, we characterize the closure of the subspace of smooth functions in the natural
variational spaces associated with the electric and magnetic fields.

In section 3, we give two different decompositions of the variational spaces. In the first case,
the regular part is in H1 on the whole domain, thus has no jumps across the interfaces, whereas
in the second case, the regular part has jumps in the components normal to the interfaces. In both
cases, the singular parts are gradients.

In section 4, we state the necessary results on scalar interface problems for the Laplacian. In
section 5, the three types of Maxwell corner singularities and in section 6, the edge singularities
are studied.

Section 7 gives some conclusions about Hs regularity in general and in several particular
cases. We give in section 8 proofs for the results about minimal edge regularity for the Laplace
interface problems on which the Maxwell regularity results are based.
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We shall use the following geometric and analytic setting: We assume that Ω is a Lipschitz
polyhedron, which means that Ω is a bounded Lipschitz domain with piecewise plane boundary.
We also assume that ε and µ are piecewise constant > 0 on Ω , determining a partition P of
Ω in a finite set of Lipschitz polyhedra Ω1, . . . ,ΩJ : on each Ωj , ε = εj and µ = µj with εj
and µj positive constants. We denote by Fjk the (open) faces of Ωj . Let Fint be the set of
the interior faces (contained in Ω ) and Fext the set of the exterior faces (contained in ∂Ω ).

In general, we will denote by bold letters the functional spaces for the fields. Thus Hs(Ω)
denotes the usual Sobolev space on Ω and Hs(Ω) denotes Hs(Ω)3 . We also need for s ≥ 1

2
piecewise Hs functions relative to the partition P

PHs(Ω,P) = {ϕ ∈ L2(Ω) | ϕj ∈ Hs(Ωj), j = 1, . . . , J}.

Here, of course, ϕj denotes the restriction of ϕ to Ωj . For the fields we set

PHs(Ω,P) = PHs(Ω,P)3.

We will also denote by PH1/2(Fint) the product of the spaces H1/2(F ) for F ∈ Fint and
similarly for Fext . Finally, as usual for Maxwell equations, we need spaces of fields with square
integrable curls:

H(curl ; Ω) = {u ∈ L2(Ω)3 | curlu ∈ L2(Ω)3}, (0.1)

and with square integrable divergences (here ξ = ε or µ )

H(div ; ξ ; Ω) = {u ∈ L2(Ω)3 | div(ξu) ∈ L2(Ω)}. (0.2)

As usual, if ξ ≡ 1 , H(div ; ξ ; Ω) is denoted H(div ; Ω) for short.

1 Maxwell formulations

Classical time harmonic Maxwell equations are given by

curlE − iω µH = 0 and curlH + iω εE = J in Ω. (1.1)

Here E is the electric part and H the magnetic part of the electromagnetic field. The right hand
side J is the current density. The exterior boundary conditions on ∂Ω are those of the perfect
conductor ( n denotes the unit outer normal on ∂Ω ):

E × n = 0 and H · n = 0 on ∂Ω. (1.2)

The natural variational spaces are XN (Ω, ε) for the electric field and XT (Ω, µ) for the
magnetic field according to

XN (Ω, ε) = {u ∈H(curl ; Ω) ∩H(div ; ε ; Ω) | u× n = 0 on ∂Ω}

and
XT (Ω, µ) = {u ∈H(curl ; Ω) ∩H(div ;µ ; Ω) | u · n = 0 on ∂Ω}.

Any field u belonging to one of these spaces is in H(curl ; Ωj) ∩H(div ; Ωj) for each j and
satisfies additional jump conditions at the interior interfaces F ∈ Fint :

XN (Ω, ε) =
{
u ∈ L2(Ω)3 | curluj ∈ L2(Ωj)

3, divuj ∈ L2(Ωj),

[u× n]F = 0, [εu · n]F = 0, ∀F ∈ Fint

u× n|F = 0, ∀F ∈ Fext

} (1.3)
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and

XT (Ω, µ) =
{
u ∈ L2(Ω)3 | curluj ∈ L2(Ωj)

3, divuj ∈ L2(Ωj),

[u× n]F = 0, [µu · n]F = 0, ∀F ∈ Fint

u · n|F = 0, ∀F ∈ Fext

} (1.4)

where the jump [v ×n]
F

is equal to (vj ×nj − vj′ ×nj)|F if F belongs to ∂Ωj and to ∂Ωj′ ,
with vj the restriction of v to Ωj and with nj the exterior unit normal to ∂Ωj .

We can formulate elliptic variational problems either for E or H . We introduce the following
two formulations:

u ∈XN (Ω, ε), ∀v ∈XN (Ω, ε),∫
Ω

µ−1 curlu · curlv + div εu div εv − ω2 εu · v =
〈
f ,v

〉
,

(1.5)

where
〈
f ,v

〉
= iω

〈
J ,v

〉
+ 1

iω

〈
divJ ,div εv

〉
, and

u ∈XT (Ω, µ), ∀v ∈XT (Ω, µ),∫
Ω

ε−1 curlu · curlv + divµu divµv − ω2 µu · v =
〈
h,v

〉
,

(1.6)

where
〈
h,v

〉
=
〈
ε−1J , curlv

〉
. If (E,H) solves the Maxwell equations (1.1)-(1.2), then E is

solution of (1.5) and H of (1.6). The converse also holds, see [8], if ω2 does not belong to the
spectrum of the operators −∆Dir

ε and −∆Neu
µ naturally associated with equations (1.1):

• −∆Dir
ε is defined from

◦
H1(Ω) into its dual H−1(Ω) by

∀Φ, Ψ ∈
◦
H1(Ω), −

〈
∆Dir
ε Φ,Ψ

〉
=

∫
Ω

εgradΦ gradΨ ; (1.7)

• −∆Neu
µ is defined from H1(Ω) into its dual by

∀Φ, Ψ ∈ H1(Ω), −
〈
∆Neu
µ Φ,Ψ

〉
=

∫
Ω

µgradΦ gradΨ . (1.8)

We end this section by a regularity result for the divergence, see also [8].

Theorem 1.1 If u solves (1.5) with f in L2(Ω)3 , then div εu belongs to
◦
H1(Ω) . If u solves

(1.6) with h in L2(Ω)3 , then divµu belongs to H1(Ω) .

Proof. Let u be solution of (1.5). Taking as test functions v = gradΦ with Φ in the domain
D(∆Dir

ε ) of ∆Dir
ε we obtain

∀Φ ∈ D(∆Dir
ε ),

〈
div εu , ∆Dir

ε Φ + ω2Φ
〉

Ω
=
〈
f , gradΦ

〉
Ω
.

Let q be a solution of the Dirichlet problem (if ω2 is an eigenvalue of −∆Dir
ε the above equation

ensures the solvability of this problem)

∀Ψ ∈
◦
H1(Ω), −

〈
εgrad q , gradΨ

〉
Ω

+
〈
ω2q ,Ψ

〉
Ω

=
〈
f , gradΨ

〉
Ω
.
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Whence
∀Φ ∈ D(∆Dir

ε ),
〈
q , ∆Dir

ε Φ + ω2Φ
〉

Ω
=
〈
f , gradΦ

〉
Ω
.

Thus div εu−q is orthogonal to the range of ∆Dir
ε +ω2 , therefore is either 0 or an eigenvector of

−∆Dir
ε associated with ω2 . Either way, div εu − q belongs to

◦
H1(Ω) , hence div εu too. The

proof for the “magnetic” problem (1.6) is similar.

2 The closure of piecewise-smooth functions in XN (Ω, ε) and XT (Ω, µ)

It is clear that the bilinear forms associated with problems (1.5) and (1.6) are coercive on
XN (Ω, ε) and XT (Ω, µ) respectively. When ε is smooth, it is proved in [7] that XN (Ω, ε) ∩
H1(Ω) is a closed subspace of XN (Ω, ε) . In our situation, the corresponding spaces are

HN (Ω, ε) := XN (Ω, ε) ∩ PH1(Ω,P) and HT (Ω, µ) := XT (Ω, µ) ∩ PH1(Ω,P).

From (1.4) and (1.3), we immediately obtain

HN (Ω, ε) =
{
u ∈ L2(Ω)3 | uj ∈H1(Ωj),

[u× n]F = 0, [εu · n]F = 0, ∀F ∈ Fint

u× n|F = 0, ∀F ∈ Fext

} (2.1)

and

HT (Ω, µ) =
{
u ∈ L2(Ω)3 | uj ∈H1(Ωj),

[u× n]F = 0, [µu · n]F = 0, ∀F ∈ Fint

u · n|F = 0, ∀F ∈ Fext

} (2.2)

In this section we are going to prove that not only HN (Ω, ε) is closed in XN (Ω, ε) , but still
HN (Ω, ε) is the closure in XN (Ω, ε) of piecewise-smooth functions. To this aim, let us introduce
for any s , 1 ≤ s ≤ ∞ , the spaces Hs

N (Ω, ε) and Hs
T (Ω, µ) :

Hs
N (Ω, ε) := XN (Ω, ε) ∩ PHs(Ω,P) and Hs

T (Ω, µ) := XT (Ω, µ) ∩ PHs(Ω,P).

Of course their elements are the piecewise-Hs fields satisfying the boundary and transmission
conditions of (2.1) and (2.2).

Our main result in this section is

Theorem 2.1 The closure of H∞N (Ω, ε) in XN (Ω, ε) is HN (Ω, ε) , and the closure of H∞T (Ω, µ)
in XT (Ω, µ) is HT (Ω, µ) .

The proof follows from a succession of lemmas.

Lemma 2.2 Let CN = maxj{ε−1
j , εjµj} and CT = maxj{µ−1

j , εjµj} . Then for any v ∈
H2
N (Ω, ε) there holds ∫

Ω

ε |gradv|2 ≤ CN

∫
Ω

(
µ−1| curlv|2 + |div εv|2

)
, (2.3)

and for any v ∈H2
T (Ω, µ) there holds∫

Ω

µ |gradv|2 ≤ CT

∫
Ω

(
ε−1| curlv|2 + |divµv|2

)
. (2.4)
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Note that the left hand sides of (2.3) and (2.4) are the bilinear forms of the operators ∆Dir
ε

and ∆Neu
µ respectively and that their right hand sides are the Maxwell bilinear forms, cf (1.5) and

(1.6).

Proof. For any j and any v ∈ H2(Ωj) two successive integrations by parts yield:∫
Ωj

εj |gradv|2 = −
∫

Ωj

εj∆v · v +

∫
∂Ωj

εj∂nv · v

=

∫
Ωj

εj

(
| curlv|2 + |div v|2

)
+

∫
∂Ωj

εj

(
∂nv · v − (curlv × n) · v − div v (v · n)

)
On each face of ∂Ωj , let us denote by vn the normal component v · n of v and by v> its
tangential component v − vnn . The tangential parts of the gradient and of the divergence are
denoted by grad> and div> . Using that the faces of Ωj are plane and relying in particular on
the identity − curlv × n = grad> vn − ∂nv> which holds on each face, we arrive at∫

Ωj

εj |gradv|2 =

∫
Ωj

εj

(
| curlv|2 + |div v|2

)
+

∫
∂Ωj

grad>(εjvn) · v> − div> v> (εjvn).

If v belongs to PH2(Ω,P) and is such that for any interface F ∈ Fint , [v×n] = 0 , we deduce
from the above equality that∫

Ω

ε |gradv|2 =

∫
Ω

ε
(
| curlv|2 + |div v|2

)
+

∑
F∈Fext

∫
F

grad>(εvn) · v> − div> v> (εvn)

+
∑

F∈Fint

∫
F

grad>[εvn]
F
· v> − div> v> [εvn]

F
.

Thus, if v ∈ H2
N (Ω, ε) ,

∫
Ω
ε |gradv|2 is equal to

∫
Ω
ε(| curlv|2 + |div v|2) and similarly, if

v ∈ H2
T (Ω, µ) ,

∫
Ω
µ |gradv|2 is equal to

∫
Ω
µ(| curlv|2 + |div v|2) . Estimates (2.3) and (2.4)

are now straightforward.

Now we are going to prove density results. For this, we go through several steps.

Lemma 2.3 Let ω be a bounded sector of radius 1 in R2 and let r be the distance to its vertex.
Let h belong to H1(ω) . Then rαh tends to h in H1(ω) as α→ 0 .

Proof. By the dominated convergence theorem, we obtain immediately that rαh , rα∂xh and
rα∂yh tend to h , ∂xh and ∂yh respectively in L2(ω) as α → 0 . It remains to prove that
h ∂rr

α tends to 0 in L2(ω) as α→ 0 .

The difficulty lying in r = 0 , we can assume that h = 0 on r = 1 . With the help of an integration
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by parts, we obtain∫ 1

0

|h ∂rrα|2 rdr =
1

2

∫ 1

0

αh2 ∂rr
2α dr = −

∫ 1

0

αh∂rh r
2α dr

= −
∫ 1

0

αrα−1h rα∂rh rdr,

from which we deduce

‖h ∂rrα‖
2

L2(ω)
≤ ‖h ∂rrα‖L2(ω)

‖rα∂rh‖L2(ω)
.

Thus, setting

X(α) = ‖h ∂rrα‖
2

L2(ω)
,

we have obtained that X(α) is bounded as α→ 0 . Similarly as above, we have

X(α)− 2X(α2 ) = −
∫
ω

αrα−1h (rα∂rh− ∂rh) dx dy,

from which we deduce

|X(α)− 2X(α2 )| ≤
√
X(α) ‖rα∂rh− ∂rh‖L2(ω)

.

Thus, |X(α) − 2X(α2 )| tends to 0 as α → 0 . As X(α) is bounded, we can deduce from this
what we wanted, i.e. that X(α)→ 0 .

Lemma 2.4 Let ω be as in Lemma 2.3 and let χ = χ(r) a smooth function in C∞0 (−1, 1) equal
to 1 in a neighborhood of 0 . Let h belong to H1(ω) . Then h belongs to the closure in H1(ω)
of the set

S(h) :=
{
rα(1− χ(nr))h | α ∈ (0, 1), n ∈ N

}
. (2.5)

Proof. With Lemma 2.3 we have only to prove that we can choose α and n so that the norm of
rαχ(nr)h in H1(ω) is as small as we want. Obviously, rαχ(nr)h , rαχ(nr)∂xh and rαχ(nr)∂yh
tend to 0 in L2(ω) as n→∞ uniformly in α ∈ (0, 1) . From the proof of Lemma 2.3, we have
that h∂rr

α tends to 0 , thus χ(nr)h∂rr
α tends to 0 in L2(ω) as α → 0 , uniformly in n . It

remains to evaluate the norm of rαh∂rχ(nr) in L2(ω) . We start from the estimate

∃C > 0, ∀r ∈ (0, 1),∀n ∈ N, |∂rχ(nr)| ≤ C

r
.

Then, as the support of ∂rχ(nr) is contained in (0, 1
n ) , we have

‖rαh∂rχ(nr)‖
L2(ω)

≤ n−α/2‖rα/2h∂rχ(nr)‖
L2(ω)

≤ C n−α/2‖r−1+α/2h‖
L2(ω)

.

Since, for any α > 0 , by Hardy’s inequality, r−1+α/2h belongs to L2(ω) , for any fixed α , we
can choose n so that ‖rαh∂rχ(nr)‖

L2(ω)
is as small as we want.

As a straightforward corollary of the previous lemma, we obtain the corresponding result in
R3 :

Lemma 2.5 Let W = ω × I where ω is a plane sector and I an open interval. Let h belong
to H1(W ) . Then h belongs to the closure in H1(W ) of the set S(h) defined by (2.5) where r
is still the distance to the vertex in ω .
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Lemma 2.6 Let Ωj be a polyhedral partition of Ω and let Σ be the skeleton formed by the union
of the closed edges of all the Ωj . Then the subspace of H∞N (Ω, ε) of the fields which are zero on
Σ , is dense in HN (Ω, ε) , and similarly for the spaces HT (Ω, µ) .

Proof. Let h ∈ HN (Ω, ε) and ε > 0 . The proof of the existence of a h̃ ∈ H∞N (Ω, ε) such

that h̃ = 0 on Σ and ‖h− h̃‖
PH1(Ω,P)

< ε is organized in three steps.

Step 1. Let χ be a function like in Lemmas 2.4 and 2.5. For each vertex S ∈ Σ let ρS be the
distance to S . Then χ(nρS)h tends to 0 in PH1(Ω,P) for each vertex S as n→∞ . Thus
we can choose n large enough so that

h1 := h−
∑
S

χ(nρS)h is such that ‖h− h1‖PH1(Ω,P)
< ε/4.

Then we can apply Lemma 2.5 to h1 in the neighborhood of each edge in Σ , and we obtain a
new field h2 in H1

N (Ω, ε) such that

h2 = 0 in a neighborhood V of Σ and ‖h− h2‖PH1(Ω,P)
< ε/2.

Step 2. Let V0 be a neighborhood of Σ such that V 0 ⊂ V . We can then introduce independent
lifting of traces RF on each face F ∈ Fint∪Fext acting from the subspace of H1/2(F ) of functions
g which are zero on V0 , into PH1(Ω,P) , so that RF (g) is zero in a neighborhood of all the
other faces. With these liftings, we can construct a lifting RN of the trace and jump operator
γN

γN : PH1(Ω,P) −→
∏
F∈Fext

H1/2(F )2 ×
∏
F∈Fint

H1/2(F )3

v 7−→
(
g>,F = v × n|F , g>,F = [v × n]F , gn,F = [εv · n]F

)
,

such that γNRNg = g for all set of traces and jumps which are zero on V0 . Let CR be the norm
of RN .

Step 3. We regularize h2 in each Ωj by convolution by a regularizing sequence χn . For n
large enough, the regularized field h3 is zero on V0 and

‖h2 − h3‖PH1(Ω,P)
< ε/4 and ‖γNh3‖PH1/2 < ε/(4CR)

Setting h̃ = h3 − RNγNh3 yields the desired approximation of h . The proof for the other
boundary conditions is similar.

Now, Theorem 2.1 is clearly a consequence of lemmas 2.2 and 2.6.

3 Singularities of the variational spaces

In this section we establish continuous decompositions of the spaces XN (Ω, ε) and XT (Ω, µ)
into a H1 or PH1 field and a gradient. Such a decomposition is well known for the homogeneous
Maxwell’s equations, i.e. when ε and µ are constant or sufficiently regular (e.g. Lipschitz)
[3, 4, 12, 2, 17], and was extended to the heterogeneous case by [5] under the assumption of
two materials with a plane interface. We prove here two sorts of decompositions in our general
framework.

We begin with two lemmas giving the existence of regular vector potentials:

Lemma 3.1 Let us assume that Ω is simply connected. Let u be a divergence-free L2 field.
Then there exists ψ ∈HT (Ω, 1) such that curlψ = u .
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This Lemma is simply obtained by the combination of [1, Th.3.12] which yields a potential
ψ0 in XT (Ω, 1) and a decomposition of this ψ0 in a regular ψ ∈ HT (Ω, 1) and a gradient
according to [3]. Of course this gradient part does not contribute to the curl!

Similarly, relying on [1, Th.3.17] and [3], we obtain

Lemma 3.2 Let us assume that Ω is simply connected. Let u be a divergence-free L2 field such
that u · n is zero on ∂Ω . Then there exists ψ ∈HN (Ω, 1) such that curlψ = u .

We also introduce the following notation:

Notation 3.3 For g = (gF )
F
∈ PH1/2(Fint) and f ∈ L2(Ω) we write

−∆Dir
ε Φ = f +

∑
F∈Fint

gF ⊗ δF

if we have the variational formulation (1.7):

Φ ∈
◦
H1(Ω), ∀Ψ ∈

◦
H1(Ω),

∫
Ω

εgradΦ gradΨ =

∫
Ω

fΨ dx+
∑

F∈Fint

∫
F

gFΨ dσ.

We use the analogous notation for ∆Neu
µ based on the variational formulation (1.8) with the same

right hand side as above:

Φ ∈ H1(Ω), ∀Ψ ∈ H1(Ω),

∫
Ω

µgradΦ gradΨ =

∫
Ω

fΨ dx+
∑

F∈Fint

∫
F

gFΨ dσ.

Our first decomposition result yields a “regular” part in H1(Ω) and a “singular” part in the
form of a gradient, which contains in particular all the jumps through the interfaces.

Theorem 3.4 Any field v ∈XT (Ω, µ) admits a decomposition

v = ψ + gradΦ, (3.1)

where ψ ∈HT (Ω, 1) and Φ ∈ H1(Ω) satisfies −∆Neu
µ Φ = f +

∑
Fint

gF ⊗ δF with f ∈ L2(Ω) ,

g ∈ PH1/2(Fint) . Similarly any v ∈XN (Ω, ε) admits a decomposition (3.1) where ψ ∈HN (Ω, 1)

and Φ ∈
◦
H1(Ω) satisfies −∆Dir

ε Φ = f +
∑

Fint
gF ⊗ δF . In both cases there holds

‖ψ‖
H1(Ω)

+ ‖f‖
L2(Ω)

+ ‖g‖
PH1/2(Fint)

≤ C‖v‖
X
. (3.2)

Proof. We first note that with the help of a partition of unity, we can reduce to the case when
Ω is simply connected.

Let v ∈ XT (Ω, µ) . Since its curl is a L2 divergence-free field we can apply Lemma 3.1 to
u = curlv and find ψ ∈HT (Ω, 1) such that curlψ = curlv . Then v −ψ is a curl-free field.
As Ω is simply connected, this is a gradient: there exists Φ ∈ H1(Ω) such that v−ψ = gradΦ .
Obviously Φ satisfies

∀Ψ ∈ H1(Ω),

∫
Ω

µgradΦ gradΨ =

∫
Ω

µ(v −ψ)gradΨ dx,
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which enters the framework of Notation 3.3 with f = −divµv + d̃ivµψ , where the operator d̃iv
is the divergence in ∪jΩj (and not in Ω ), and for all F ∈ Fint , gF = −[µ]

F
ψ · n .

Now, if v ∈ XN (Ω, ε) , we note that curlv satisfies also curlv · n = 0 on ∂Ω . Thus we can
apply Lemma 3.2 to obtain ψ ∈ HN (Ω, 1) such that curlψ = curlv . Then, as above, there
exists Φ ∈ H1(Ω) such that v − ψ = gradΦ . Since (v − ψ) × n = 0 on ∂Ω , Φ belongs to
◦
H1(Ω) and the proof ends as above.

Our second decomposition result is more in the spirit of the splittings given in [3, 4, 12] and
[5]. It consists in obtaining a “regular” part in HT (Ω, µ) or HN (Ω, ε) instead of HT (Ω, 1) or
HN (Ω, 1) . For the assumptions and the proof of this statement we use some facts and terminology
about the behavior of the operators ∆Neu

µ and ∆Dir
ε with respect to the corners and edges of Ω

and of its subdomains Ωj which we describe in the next section.

Theorem 3.5 (i) Let us assume that the operator ∆Neu
µ has no edge exponent equal to 1 and

no corner exponent equal to 1
2 . Then any field v ∈XT (Ω, µ) admits a decomposition

v = w + gradΦ0, (3.3)

where w ∈HT (Ω, µ) and Φ0 ∈ H1(Ω) satisfies −∆Neu
µ Φ0 ∈ L2(Ω) .

(ii) Let us assume that the operator ∆Dir
ε has no edge exponent equal to 1 and no corner exponent

equal to 1
2 . Then any field v ∈ XN (Ω, ε) admits a decomposition (3.3) where w ∈ HN (Ω, ε)

and Φ0 ∈
◦
H1(Ω) satisfies −∆Dir

ε Φ0 ∈ L2(Ω) .

Proof. (i) We start from the first decomposition (3.1) and split Φ into two parts, each belonging
to H1(Ω) (see Theorem 4.1):

Φ = Φ0 + Φ1, with ∆Neu
µ Φ0 ∈ L2(Ω) and Φ1 ∈ PH2(Ω,P).

We then set w = ψ+ gradΦ1 which belongs to PH1(Ω,P) . Since ∆Neu
µ Φ0 ∈ L2(Ω) , gradΦ0

belongs to XT (Ω, µ) . Thus w also belongs to XT (Ω, µ) , therefore to HT (Ω, µ) . The proof for
(ii) is similar.

4 Laplace interface singularities

As a synthesis of the thorough treatment of bidimensional interface problems in [18] and of
tridimensional monodomain boundary value problems in [9], we briefly present in this section the
regularity and splitting results for the Laplace interface operators ∆Dir

ε and ∆Neu
µ .

The notion of corner and edge is clear for a polyhedron in R3 . Concerning Ω with its
polyhedral partition P , we call corner of (Ω,P) any point c which is a corner of (at least) one
of the Ωj and edge any segment e which is an edge of one of the Ωj and either disjoint from
the other Ωk or contained in one of their edges.

Let us give an illustrative example: Ω1 and Ω2 are the unit cubes (0, 1)3 and (−1, 0) ×
(0, 1)2 , and Ω3 is the parallelepiped (−1, 1)2×(−1, 0) . Finally Ω is the interior of Ω1∪Ω2∪Ω3 .
The corners are the corners of Ω and the points c1 = (0, 0, 0) , c2 = (0, 1, 0) , c3 = (0, 1, 1) ,
c4 = (0, 0, 1) , c5 = (1, 1, 0) and c6 = (−1, 1, 0) . With the two other corners c7 = (1, 0, 0)
and c8 = (−1, 0, 0) , the interface edges are [c1, c2] (triple), [c2, c3] , [c3, c4] , [c4, c1] , [c1, c7] ,
[c7, c5] , [c5, c2] , [c1, c8] , [c8, c6] , [c6, c2] (double).

Note that it is possible to have corners and edges contained in the interior of Ω . This would
happen if we add to the example above the fourth domain Ω4 = (−1, 1)× (−1, 0)× (0, 1) . Then
Ω is the cube (−1, 1)3 , c1 is an interior corner and is the end of interior edges.
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The general principle governing the properties of the operators ∆Dir
ε and ∆Neu

µ relies on the
knowledge of the exponents λ attached to each corner and edge of (Ω,P) , which are the (here
real) numbers such that there exist non-polynomial pseudo-homogeneous solutions of degree λ to
model problems on the cones or sectors Γ associated with the corresponding corner or edge.

4.a Corner exponents

If c is one fixed corner of (Ω,P) , we shall use polar coordinates (ρ, ϑ) centered at c and
denote by Γc the polyhedral cone which coincides with Ω near c . To each Ωj containing c
there corresponds a unique cone Γc,j ⊂ Γc and we denote by Fint,c the set of interior (to Γc )
faces of ∂Γc,j .

We then denote by Gc the intersection of Γc with the unit sphere. For any λ ∈ C , let us
set

Sλ(Γc) =
{

Ψ = ρλ
Q∑
q=0

logqρ ψq(ϑ) | ψq ∈ H1(Gc)
}
, (4.1)

which is the space of pseudo-homogeneous functions whose angular regularity is compatible with
the H1 regularity of variational solutions. Fitting to the operator ∆Dir

ε , we consider the subspace
Sλ0 (Γc) of Sλ(Γc) of the functions which are zero on ∂Γc . When λ ∈ N , we need two further
families of polynomial spaces (which are reduced to {0} if λ 6∈ N ) corresponding to solutions
and right hand sides respectively. Let Pλ0 (Γc,P) be the subspace of Sλ0 (Γc) of the functions
which are polynomial in each Γc,j and let Qλ(Γc,P) be the space of the couples (f, g) with f
homogeneous polynomial of degree λ−2 in each Γc,j and g = (gF )

F∈Fint,c
with gF homogeneous

polynomial of degree λ− 1 in the interface F .

The set ΛDir
ε (Γc) of the corner exponents of the Dirichlet operator ∆Dir

ε is then the set of
the λ ∈ C such that there exist solutions Ψ ∈ Sλ0 (Γc) \ Pλ0 (Γc,P) to

−∆Dir
ε Ψ = f +

∑
F∈Fint,c

gF ⊗ δF , with (f, g) ∈ Qλ(Γc,P), (4.2)

(cf Notation 3.3). We denote the space of these solutions by ZλDir(Γc, ε) . The sets ΛNeu
µ (Γc) and

ZλNeu(Γc, µ) are defined similarly. Note that if c is an interior corner, the spaces Sλ0 (Γc) and
Sλ(Γc) coincide and there is no influence of the external boundary conditions.

Since there holds

∆Dir
ε (ρλψ(ϑ)) = 0 ⇐⇒ div>εgrad>ψ + λ(λ+ 1) εψ = 0 (4.3)

with grad
>

and div> the tangential gradient and divergence on Gc , the set of corner exponents

in c is related to the spectrum of the positive Dirichlet Laplace-Beltrami operator LDir
ε,c associated

with the quadratic form
(ψ,ϕ) 7−→ (grad

>
ψ,grad

>
ϕ)ε

on the space L2(Gc, ε) with scalar product

(ψ,ϕ) 7−→ (ψ,ϕ)ε =

∫
Gc

εψ ϕ dσ.

The operator LDir
ε,c is self-adjoint on L2(Gc, ε) with a compact inverse. Let ν1 < ν2 ≤ · · · be its

eigenvalues and ψj be the corresponding eigenfunctions. Then one can show that

ΛDir
ε (Γc) \ N =

{
− 1

2 −+
√
νj + 1

4 , j ≥ 1
}
\ N, (4.4)
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and, if λ 6∈ N
ZλDir(Γc, ε) = span

{
ρλψj(ϑ) | λ = − 1

2 −+
√
νj + 1

4

}
. (4.5)

The situation is similar for ΛNeu
µ (Γc) and ZλNeu(Γc, µ) .

Relying on (4.3), we can prove that for any corner c , 0 6∈ ΛDir
ε (Γc) and 0 6∈ ΛNeu

µ (Γc) .

4.b Edge exponents

Fix one edge e of Ω and denote by Γe the two-dimensional plane sector such that Γe × R
coincides with Ω in a neighbourhood of an interior point of e . The polar coordinates in Γe
are denoted (r, θ) , the cartesian coordinates in the plane of Γe are denoted y , and z is the
perpendicular coordinate. To each Ωj containing e there corresponds a unique sector Γe,j ⊂ Γe
and we denote by Fint,e the set of interior faces of ∂Γe,j .

Like above, we can introduce the spaces Sλ(Γe) , Sλ0 (Γe) and Pλ0 (Γe,P) of homogeneous
functions of degree λ in the sector Γe and the corresponding space for the right-hand sides
Qλ(Γe,P) . Then the set ΛDir

ε (Γe) of the edge exponents of the Dirichlet transmission operator
is defined exactly like above as the set of the λ ∈ C such that there exist solutions Ψ ∈ Sλ0 (Γe) \
Pλ0 (Γe,P) to

−∆Dir
ε Ψ = f +

∑
F∈Fint,e

gF ⊗ δF , with (f, g) ∈ Qλ(Γe,P), (4.6)

where ∆Dir
ε acting in the sector Γe is simply the operator obtained from the corresponding three-

dimensional operator by dropping the variable z . Thus the edge exponents are the same as the
singularity exponents for two-dimensional interface problems, see [10, 16, 15, 19].

The intersection between Γe and the unit circle being denoted Ge , with (νj)j≥1 the spec-
trum of the positive Laplace-Beltrami operator LDir

ε,e associated with the quadratic form (ψ,ϕ) 7→
(∂θψ, ∂θϕ)ε on the space L2(Ge, ε) , we have:

ΛDir
ε (Γe) =

{
−+
√
νj , j ≥ 1

}
. (4.7)

Indeed, when λ 6∈ N , this can be proved like (4.4) from the equivalence

∆Dir
ε (rλψ(θ)) = 0 ⇐⇒ ∂θ ε ∂θψ + λ2 εψ = 0 (4.8)

and when λ ∈ N , this also relies on the equality for the dimensions of the polynomial spaces

dimPλ0 (Γe,P) = dimQλ(Γe,P) = λJe − Ie, (4.9)

where Je is the number of the sectors Γe,j and Ie = 0 if e is an internal edge and Ie = 1 if
not, see [9, Cor. (4.9)].

4.c Regularity and singularities

We first give a global statement, then provide a description of the singular solutions, which
requires the introduction of further notations.

Theorem 4.1 Let s > 0 , s 6= 1
2 , f ∈ PHs−1(Ω,P) and g ∈ PHs−1/2(Fint) . Let Φ be the

solution of the problem

−∆Dir
ε Φ = f +

∑
F∈Fint

gF ⊗ δF .
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(i) If for any corner c and any edge e

ΛDir
ε (Γc) ∩ (− 1

2 , s−
1
2 ] = ∅ and ΛDir

ε (Γe) ∩ (0, s] = ∅,

then Φ belongs to PHs+1(Ω,P) .

(ii) If for any corner c and any edge e

ΛDir
ε (Γc) 63 s− 1

2 and ΛDir
ε (Γe) 63 s,

then Φ admits a splitting Φ0 + Φ1 into a regular part Φ1 ∈ PHs+1(Ω,P) and a singular part
Φ0 ∈ H1(Ω) generated by the spaces ZλDir(Γc, ε) and ZλDir(Γe, ε) for λ in ΛDir

ε (Γc)∩ (− 1
2 , s−

1
2 )

and ΛDir
ε (Γe)∩(0, s) respectively. In particular, if s ≤ 1 , ∆Dir

ε Φ0 = f0 with f0 ∈ PHs−1(Ω,P) .

For c in the set C of corners of (Ω,P) and λ ∈ ΛDir
ε (Γc) , let Ψλ,p

c be a basis of ZλDir(Γc, ε)
and denote by Φλ,pc the function defined as

Φλ,pc (x) = χc(ρc) Ψλ,p
c (ρc, ϑc), (4.10)

with a smooth cut-off function χc equal to 1 in a neighborhood of 0 and (ρc, ϑc) the polar
coordinates associated with c .

Similarly, for e in the set E of edges of (Ω,P) and λ ∈ ΛDir
ε (Γe) , let Ψλ,p

e be a basis of
ZλDir(Γe, ε) and denote by Φλ,pe the function defined as

Φλ,pe (x) = χe(ρe) Ψλ,p
e (ρe, ϑe), with ρe =

re
de

(4.11)

where χe is a smooth cut-off function equal to 1 in a neighborhood of 0 , de a smooth function
on the closed edge ē , which is equivalent to the distance to the endpoints of e and (re, θe, ze)
the cylindrical coordinates associated with e .

In order to give a precise statement, we still need weighted Sobolev spaces for the edge singu-
larity coefficients and a smoothing operator, exactly as in [8]: Let for m ∈ N and η ∈ R , Vmη (e)
be defined as

Vmη (e) =
{
γ ∈ L2(e) | (de)

η+k ∂kzeγ ∈ L
2(e), k = 0, 1, . . . ,m

}
and by interpolation for non-integer m . The smoothing operator K [ · ] acts like a lifting of
functions on e into Ω : in order to define it, we introduce the stretched variable

z̃e =

∫ ze

0

1

de(z)
dz,

where z = 0 corresponds to an interior point of e . The change of variable ze 7→ z̃e is one to one
e→ R and for any function γ defined on e , we set γ̃(z̃e) = γ(ze) . Then K [γ](ρe, θe, ze) is the
convolution operator with respect to z̃e :

K [γ](ρe, θe, ze) =

∫
R

1

ρe
ϕ
( t

ρe

)
γ̃(t− z̃e) dt with ρe =

re
de
,

where ϕ is a smooth function in S (R) such that
∫
R ϕ = 1 .

Proposition 4.2 Let the assumptions of (ii) in Theorem 4.1 be satisfied. We assume moreover
that for any edge e , the set ΛDir

ε (Γe) ∩ [0, s] is contained in an interval of length < 1 (this is a
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technical assumption to avoid the “shadows” of the main singularities Ψλ,p
e ). Then the singular

part Φ0 has the expansion

Φ0 =
∑
c∈C

∑
λ∈[− 1

2 ,s−
1
2 ]

∑
p

γλ,pc Φλ,pc +
∑
e∈E

∑
λ∈[0,s]

∑
p

K [γλ,pe ] Φλ,pe (4.12)

with the coefficients γλ,pc in R and γλ,pe in Vs−λ−s (e) . The sums extend over λ in [− 1
2 , s−

1
2 ]∩

ΛDir
ε (Γc) and [0, s] ∩ ΛDir

ε (Γe) , respectively.

5 Maxwell interface corner singularities

For shortness, we here describe the corner singularities of problem (1.5) (the singularities of
problem (1.6) are obtained similarly by exchanging Dir, ε and Neu, µ respectively). We further
assume that Ω is simply connected.

We fix a corner c of (Ω,P) and drop the index c in the notations. At this stage, we look
for solutions of the homogeneous Maxwell interface systems in the spaces of pseudo-homogeneous
functions

SλN (Γ, ε) =
{
u ∈X loc

N (Γ∗, ε) | div(εu) ∈ H1
loc(Γ∗), u(x) = ρλ

Q∑
q=0

logqρ Uq(ϑ)
}
,

where u ∈X loc
N (Γ∗, ε) means that u ∈X loc

N (Γ∩V, ε) , for all bounded open sets V such that c 6∈
V : this space requires exactly the angular regularity corresponding to the effective regularity of the
variational solution (in particular, for the condition div(εu) ∈ H1

loc(Γ∗) , we rely on Theorem 1.1).
In other words, we have to find the non-polynomial solutions of the system curl(µ−1 curlu)− εgraddiv(εu) = f in Γ,

div(εu) = 0 on ∂Γ,
u ∈ SλN (Γ, ε),

(5.1)

when f is a homogeneous polynomial of degree λ − 2 (thus it is zero if λ 6∈ {2, 3, . . .} ). The
corresponding λ are the Maxwell (Dirichlet) corner exponents.

Like in [8], this problem is split into three subproblems by introducing the auxiliary unknowns

ψ = µ−1 curlu and q = div(εu).

Using also the space SλT (Γ, µ) defined like SλN (Γ, ε) and the space Sλ0 (Γ) introduced in section
4.a, we then see that for λ 6∈ {2, 3, . . .} , problem (5.1) is equivalent to finding non-polynomial
solutions to the system

−∆Dir
ε q = 0 in Γ with q ∈ Sλ−1

0 (Γ). (5.2a)

curlψ = ε grad q and div(µψ) = 0 in Γ with ψ ∈ Sλ−1
T (Γ, µ). (5.2b)

curlu = µψ and div(εu) = q in Γ with u ∈ SλN (Γ, ε). (5.2c)

Thus, the solutions of the system (5.2) belong to one of the three types:

Type 1. q = 0 , ψ = 0 and u general non-zero solution of (5.2c).

Type 2. q = 0 , ψ general non-zero solution of (5.2b) and u particular solution of (5.2c).

Type 3. q general non-zero solution of (5.2a), ψ particular solution of (5.2b) and u particular
solution of (5.2c).
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These three types of Maxwell singularities are now described with the help of the corner
singularities of ∆Dir

ε and ∆Neu
µ . The singularities of type 1 are treated exactly as in [8, Lemma

7.4].

Lemma 5.1 We assume that λ 6= −1 . Then (i) is equivalent to (ii):
(i) u ∈ SλN (Γ, ε) is a solution of (5.2) of type 1,
(ii) λ+ 1 belongs to ΛDir

ε (Γ) and u = gradΦ where Φ belongs to Zλ+1
Dir (Γ, ε) .

For singularities of type 2 and 3, the jumps of the product εµ through the interfaces require
a special attention.

Lemma 5.2 We assume that λ is not an integer. Then (i) is equivalent to (ii):
(i) u ∈ SλN (Γ, ε) is a solution of (5.2) of type 2,
(ii) λ belongs to ΛNeu

µ (Γ) and curlu = µgradΨ where Ψ belongs to ZλNeu(Γ, µ) . In that case,
a representative of type 2 is given by

u =
1

λ+ 1

(
µ (gradΨ× x) + grad rN

)
, (5.3)

where rN ∈ Sλ+1(Γ) is a solution of

∆Dir
ε rN =

∑
F∈Fint,c

[εµ]
F

(
(gradΨ× n) · x

)∣∣∣
F
⊗ δF . (5.4)

Proof. We simply need to investigate the non-zero solutions (ψ,u) of (5.2) of type 2. First
a non-zero Ψ in ZλNeu(Γ, µ) yields a non-zero requested ψ = gradΨ (because λ 6= 0 ). It then
remains to find u ∈ SλN (Γ, ε) such that

curlu = µψ and div(εu) = 0 in Γ.

We are then looking for u of the form (5.3). In that case, we have

(λ+ 1) curlu = curl(µgradΨ× x)

= x · grad(µψ)− µψ · gradx+ µψ divx− x div(µψ),

due to the identity (7.5b) of [8]. This yields

curlu = µψ,

because ψ is homogeneous, div(µψ) = 0 and one can show that

x · grad(µψ) = µx · gradψ in the distributional sense.

On the other hand, the conditions div(εu) = 0 and u × n = 0 on ∂Γ will hold if (5.4) holds
since

div
(
εµ (gradΨ× x)

)
=

∑
F∈Fint,c

gF ⊗ δF ,

where

gF = [εµ(gradΨ× x) · n]F

= −[εµ(gradΨ× n) · x]F = −[εµ]
F

(
(gradΨ× n) · x

)∣∣∣
F
,
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since gradΨ × n has no jump across the interfaces. By Theorem 4.14 of [18], problem (5.4)
has a solution rN ∈ Sλ+1(Γ) (in view of that Theorem, one sees that rN is homogeneous if
λ+ 1 6∈ ΛDir

ε (Γ) and has the form rN = r0 + r1 log ρ , with homogeneous r0 and r1 if not).

This guarantees the existence of u .

Similarly, we can show:

Lemma 5.3 We assume that λ is not integer. Then (i) is equivalent to (ii):
(i) u ∈ SλN (Γ, ε) is a solution of (5.2) of type 3,
(ii) λ− 1 belongs to ΛDir

ε (Γ) and div(εu) = q where q belongs to Zλ−1
Dir (Γ, ε) .

To each q ∈ Zλ−1
Dir (Γ, ε) , a representative of type 3 is given by

ψ =
1

λ

(
ε (grad q × x) + grad rT

)
,

where rT ∈ Sλ(Γ) is a solution of

∆Neu
µ rT =

∑
F∈Fint,c

[εµ]
F

(
(grad q × n) · x

)∣∣∣
F
⊗ δF ,

and, if λ 6∈ ΛNeu
µ (Γ) , by

u =
1

λ+ 1

(
µ (ψ × x) + grad rN

)
where rN ∈ Sλ+1(Γ) is a solution of

∆Dir
ε rN =

∑
F∈Fint,c

[εµ]
F

(
(ψ × n) · x

)∣∣∣
F
⊗ δF +

(
(1− ε2µ)λ+ 1 + ε2µ

)
q.

It remains to investigate the singularities of type 1 for λ = −1 and of type 2 for λ = 0 .

Lemma 5.4 (i) There is no singularity of type 1 for λ = −1 .
(ii) There is no singularity of type 2 for λ = 0 .

Proof. Since Γ is simply connected, the first assertion is proved exactly as in Lemma 7.8 of
[8]: we obtain that if u belongs to S−1

N (Γ, ε) (resp. S−1
T (Γ, µ) ) and satisfies curlu = 0 and

div(εu) = 0 (resp. div(µu) = 0 ), then u = 0 .

For the second one, we simply remark that if u is a singularity of type 2 in S0
N (Γ, ε) , then

ψ = µ−1 curlu ∈ S−1
T (Γ, µ)

is a solution of type 1 for magnetic boundary conditions. Therefore the first assertion yields ψ = 0
and the conclusion follows.

Remark 5.5 The case Γ not simply connected can be treated as in [8] and would yield topological
singular exponents. This case was avoided for brevity and is left to the reader. For other problems
with multiply-connected domains, see also [1, 11].

Among the singular exponents obtained before, we select the subset ΛN (Γ) of λ satisfying
λ > − 3

2 such that there exists a non-zero u ∈ SλN (Γ, ε) solution of (5.1) and satisfying (cf
Theorem 1.1)

χu ∈XN (Γ, ε), div(χεu) ∈ H1(Γ),

with a cut-off function χ which is equal to 1 in a neighborhood of the corner c . We examine
the effect of this condition on the three types of singularities.
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Type 1. λ+ 1 belongs to ΛDir
ε (Γ) . Since ΛDir

ε (Γ)∩ [−1, 0] is empty, with Lemma 5.4 we get the
condition λ > −1 .

Type 2. λ ∈ ΛNeu
µ (Γ) . Since curl(χu) = χ curlu+gradχ×u has to be in L2(Γ)3 , we have the

condition λ > − 1
2 . With Lemma 5.4, this yields λ > 0 , because the set ΛNeu

µ (Γ) ∩ [−1, 0]
is empty.

Type 3. Here λ − 1 belongs to ΛDir
ε (Γ) . Thus condition div(χεu) in H1(Γ) implies that χq

belongs to H1(Γ) , thus λ− 1 > − 1
2 , whence λ− 1 > 0 , or equivalently λ > 1 .

Type λ > Generator u ψ q

1 λ+ 1 ∈ ΛDir
ε (Γ) −1 Φ ∈ Zλ+1

Dir (Γ, ε) gradΦ 0 0

2 λ ∈ ΛNeu
µ (Γ) 0 Ψ ∈ ZλNeu(Γ, µ) cf Lem. 5.2 gradΨ 0

3 λ− 1 ∈ ΛDir
ε (Γ) 1 q ∈ Zλ−1

Dir (Γ, ε) cf Lem. 5.3 cf Lem. 5.3 q

Table 1

Going back to the primitive Maxwell equations (1.1), we see that for a regular current density
J , div(εE) and div(µH) are regular too, thus only the singularities of types 1 and 2 can occur
and they exchange each other between the electric and magnetic fields (here λ denotes the degree
of homogeneity of the generator and is either the degree of E or H and κ = iω

λ+1 ):

Type Generator λ ∈ E H

Elec. Φ ∈ ZλDir,ε ΛDir
ε gradΦ −κ (εgradΦ×x+ gradrT )

Magn. Ψ ∈ ZλNeu,µ ΛNeu
µ κ (µgradΨ×x+ gradrN ) gradΨ

Table 2

This table gives the principal parts of the singularities, indeed from (1.5) and (1.6) we see that
the operators are not homogeneous and therefore the singularities have an asymptotic expansion
[13, 9].

6 Maxwell interface edge singularities

In this section, our aim is to describe shortly the edge singularities of problem (1.5). Fix one
edge e of (Ω,P) , see §4.b for the associated definitions (we drop here the index e ). Let λ ∈ C .
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According to the general rule [9], we search for (non-polynomial) solutions u ∈ SλN (Γ × R, ε)
independent of z of the system

curl(µ−1 curlu)− εgrad div(εu) = f in Γ× R,

with f independent of z and polynomial in the y variable. The corresponding λ are the Maxwell
(Dirichlet) edge exponents. Let now (v, w) be the decomposition of the field u in the system
of cartesian coordinates (y, z) . Then this system is split into 2 two-dimensional independent
problems in the sector Γ : curl(µ−1 curlv)− εgrad div(εv) = f in Γ, f polynomial,

v × n = 0 and div(εv) = 0 on ∂Γ,
v ∈ SλN (Γ, ε),

(6.1)

and  −div(µ−1 gradw) = f in Γ, f polynomial,
w = 0 on ∂Γ,
w ∈ Sλ(Γ).

(6.2)

The problem (6.1) is simply the problem attached to two-dimensional Maxwell equations in a polyg-
onal domain, and (6.2) is the transmission Dirichlet problem whose set ΛDir

µ−1(Γ) of singularities is
well known.

For the two-dimensional “Maxwell-type” problem (6.1), as in 3D, we introduce two auxiliary
(scalar) variables

ψ = µ−1 curlv and q = div(εv). (6.3)

Then for λ 6∈ N , we get the equivalent system

−∆Dir
ε q = div f in Γ with q ∈ Sλ−1

0 (Γ). (6.4a)

curlψ = ε grad q in Γ with ψ ∈ Sλ−1(Γ). (6.4b)

curlv = µψ, div(εv) = q in Γ with u ∈ SλN (Γ, ε). (6.4c)

If λ is not a positive integer, as in the previous section, this system (6.4) is reduced to a
homogeneous one and the solutions split into singularities of types 1, 2 and 3. As in [8], the
singularities of type 2 do not exist (they appear in fact as singularities of the problem (6.2)), while
the singularities of type 1 and 3 are obtained like in §5 in relation with the edge exponents of
∆Dir
ε .

If λ is a positive integer, as in §4.b, we can check that the spaces of homogeneous polynomials
associated with the right hand sides and with the solutions have the same dimension. Thus the
Maxwell edge exponents are the λ ∈ C such that the system (6.4) has non-trivial solutions.

In view of (4.7), we can state:

Lemma 6.1 The set of the edge exponents associated with the edge e is{
λ ∈ R | λ− 1 or λ+ 1 belongs to ΛDir

ε (Γ)
}
∪ ΛDir

µ−1(Γ).

If λ 6∈ N∗ , the corresponding singular functions u = (v, w) are as follows:

(i) If λ+ 1 ∈ ΛDir
ε (Γ) , then w = 0 and v is a Maxwell singularity of type 1, given by

v = grad
(
rλ+1ϕ(θ)

)
,

when ϕ is an eigenvector of LDir
ε,e associated with the eigenvalue (λ+ 1)2 .
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(ii) If λ ∈ ΛDir
µ−1(Γ) , then v = 0 and w is a singularity associated with ∆Dir

µ−1 :

w = rλϕ(θ),

when ϕ is an eigenvector of LDir
µ−1,e associated with the eigenvalue λ2 .

(iii) If λ− 1 ∈ ΛDir
ε (Γ) , then w = 0 and v is a Maxwell singularity of type 3.

The singularities in point (ii) of the lemma are, in fact, closely related to the type 2 corner
singularities. This is seen from the following result.

Lemma 6.2 We have the identity between the sets of Laplace edge exponents

ΛDir
µ−1(Γ) = ΛNeu

µ (Γ)

and more precisely we have the equivalence between the singular functions

rλψ(θ) ∈ ZλNeu(Γ, µ) ⇐⇒ µ rλ ∂θψ ∈ ZλDir(Γ, µ
−1).

Proof. The proof uses the fact that in dimension 2 the passage to the conjugate harmonic
functions interchanges tangential and normal derivatives. This implies that a singular function
Ψ belongs to ZλNeu(Γ, µ) if and only if µΨ̃ ∈ ZλDir(Γ, µ

−1) , where on each sector Γj , Ψ̃ is the

harmonic conjugate of Ψ . Since for our homogeneous functions, Ψ̃ can be expressed by the
angular derivative, we can make this idea more precise as follows: Let ∆Neu

µ (rλψ(θ)) = 0 in Γ .
This means that

∂θµ∂θψ + λ2µψ = 0, thus µ−1∂θ(µ∂θψ) + λ2ψ = 0.

Setting ϕ = µ∂θψ , the interface conditions [ψ] = 0 and [µ∂θψ] = 0 imply therefore that [ϕ] = 0
and [µ−1∂θϕ] = 0 . Whence the lemma.

As before, we have to consider the subset of the edge exponents λ satisfying λ > −1 such
that there exists a non-zero u ∈ SλN (Γ × R, ε) independent of the variable z , solution of the
homogeneous system (6.1)-(6.2) and satisfying

curl(χu) ∈ L2(Γ)3, divy(χεu) ∈ H1(Γ),

with χ a cut-off function which is equal to 1 in a neighborhood of the corner of Γ . The effect
of this condition on each of the singularities (i), (ii) and (iii) in Lemma 6.1 is easily checked and
can be summarized as follows:

(i) In this case λ1 = λ̃− 1 , with λ̃ ∈ ΛDir
ε (Γ) and the condition is λ1 > −1 .

(ii) In this case λ2 ∈ ΛDir
µ−1(Γ) , thus λ2 has to be positive.

(iii) In this case λ3 = λ̃+ 1 , with λ̃ ∈ ΛDir
ε (Γ) , then the condition is λ3 > 1 .

7 Conclusions

7.a Regularity

Taking advantage of the information about corner and edge exponents and singularities col-
lected in sections 4 to 6 and using Theorems 4.1 of [8] (which also hold in our setting with the
natural adaptations due to the interfaces), we are now able to give regularity results.
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As always, the regularity depends on the smallest corner and edge exponents. So, for any edge
e in the set E of the edges of (Ω,P) , we introduce the smallest exponent attached to ∆Dir

ε

λDir
ε,e =

√
ν, with ν the first eigenvalue of LDir

ε,e

and the smallest exponent attached to ∆Neu
µ

λNeu
µ,e =

√
ν, with ν the first non-zero eigenvalue of LNeu

µ,e .

We have the following lower estimates for λDir
ε,e (and similar ones for λNeu

µ,e ). Proofs are given in
§8.

(i) With ρe the quotient of the minimum of ε by its maximum in the neighborhood of e , a
lower estimate of the Rayleigh quotient of LDir

ε,e yields

λDir
ε,e ≥ ρe λ

Dir
1,e . (7.1)

(ii) If e is an external edge:

• For two subdomains in a convex angle λDir
ε,e >

1
2 .

• For two subdomains in a non-convex angle λDir
ε,e >

1
4 , [19].

• For three subdomains (even in a convex angle) λDir
ε,e > 0 , [14].

(iii) If e is an internal edge:

• For two subdomains λDir
ε,e >

1
2 .

• For three subdomains λDir
ε,e >

1
4 .

• For four subdomains λDir
ε,e > 0 .

The estimates in (ii) and (iii) are generically optimal in the sense that there exist choices of Γ
and ε so that λDir

ε,e is arbitrarily close to the lower bound.

Similarly, for any corner c in the set C of the corners of (Ω,P) , we introduce the smallest
exponent attached to ∆Dir

ε (see §4.a)

λDir
ε,c = min

(
ΛDir
ε,c ∩ (− 1

2 ,∞)
)

and the smallest exponent attached to ∆Neu
µ

λNeu
µ,c = min

(
ΛNeu
µ,c ∩ (− 1

2 ,∞)
)
.

In general λDir
ε,c is the minimum of 2 and of − 1

2 +
√
ν + 1

4 , with ν the first eigenvalue of LDir
ε,c ,

and similarly for λNeu
µ,c . In any case, λDir

ε,c and λNeu
µ,c are > 0 and satisfy a lower estimate like

(7.1) by the exponents associated with one material in the same corner.

Let now set

σDir
ε = min

(
min
e∈E

λDir
ε,e , min

c∈C
λDir
ε,c + 1

2

)
and σNeu

µ = min

(
min
e∈E

λNeu
µ,e , min

c∈C
λNeu
µ,c + 1

2

)
.

In fact, the regularity result (i) of Theorem 4.1 holds with any s < σDir
ε for the operator ∆Dir

ε

and with any s < σNeu
µ for the operator ∆Neu

µ .
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Theorem 7.1 Let s ≥ 1 and f ∈ PHs−1(Ω,P) . Let u ∈XN (Ω, ε) be the solution of problem
(1.5). For any τ ∈ (0, s+ 1] such that

τ < min{σDir
ε , σNeu

µ + 1},

u belongs to PHτ (Ω,P) .

Examples

(i) If Ω contains only two subdomains, then u ∈ PHτ (Ω,P) for all τ ≤ 1
4 .

(ii) If Ω is convex and has two subdomains, then u ∈ PHτ (Ω,P) for all τ ≤ 1
2 .

(iii) If Ω is a parallelepiped divided into two subdomains separated by a plane parallel to two
faces, then u ∈ PHτ (Ω,P) for all τ < 2 .

But note that, as soon as three subdomains have an exterior common edge, or four subdomains
have an interior common edge, the regularity of u can be arbitrarily low (near L2 ). Such a
situation occurs when the ratio ρe is very small.

7.b Singularities

In this whole subsection s ≥ 1 , the data f belongs to PHs−1(Ω,P) and u is the solution
of problem (1.5).

A. We assume that s is such that there is no Maxwell Dirichlet corner exponent equal to s− 1
2

and no Maxwell Dirichlet edge exponent equal to s . Then u can be split in u0 + u1 where u1

belongs to PHs+1(Ω,P) and u0 is the sum of contributions of the corners and the edges. If
we assume moreover like in Proposition 4.2, that for any edge e , the set of the edge exponents
∈ [−1, s] is contained in an interval of length < 1 , the function u0 has a structure like Φ0 in
(4.12)

u0 =
∑
c∈C

∑
λ∈[− 3

2 ,s−
1
2 ]

∑
p

γλ,pc uλ,pc +
∑
e∈E

∑
λ∈[−1,s]

∑
p

K [γλ,pe ] uλ,pe (7.2)

with uλ,pc and uλ,pe defined like (4.10) and (4.11) from bases Uλ,p
c and Uλ,p

e of non-polynomial
solutions of problems (5.1) and (6.1)-(6.2). If Uλ,p

e has no logarithmic term, then the coeffi-
cient belongs to Vs−λ−s (e) . For non-integer λ , the functions Uλ,p

c and Uλ,p
e are described in

Lemmas 5.1 - 6.1.

B. Let us fix σ ∈ [0, s] such that for any edge e , the set of the edge exponents belonging to
[−1, σ] is contained in an interval of length < 1 . Then for suitable coefficients γλ,pc ∈ R and
γλ,pe ∈ Vs−λ−σ (e) the difference

u −

(∑
c∈C

∑
λ∈[− 3

2 ,σ−
1
2 ]

∑
p

γλ,pc uλ,pc +
∑
e∈E

∑
λ∈[−1,σ]

∑
p

K [γλ,pe ] uλ,pe

)
(7.3)

belongs to PHσ+1(Ω,P) .

If we take σ = 0 , or more generally

σDir
ε − 1 < σ < min(σDir

ε , σNeu
µ ) (7.4)
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then the corner and edge singularities of type 2 and 3 disappear, therefore it only gradients remain
in the singular part, which can be written as (cf §4.c)∑

c∈C

∑
λ∈[− 3

2 ,σ−
1
2 ]

∑
p

γλ,pc χc(ρc) gradΨλ+1,p
c (ρc, ϑc)

+
∑
e∈E

∑
λ∈[−1,σ]

∑
p

K [γλ,pe ]χe(ρe) grade Ψλ+1,p
e (ρe, θe),

(7.5)

with grade the gradient in the variable ỹe = ye/de .

Remark 7.2 In the splitting (7.5), the singular generators can also be expressed as curls since for
a homogeneous function Ψ of degree λ satisfying ∆Dir

ε Ψ = 0 , we have:

ε(λ+ 1)gradΨ = curl(εgradΨ× x)

and
grade

(
ρλeϕ(θe)

)
= curle

(
ρλeψ(θe)

)
,

when ψ = − 1
λϕ
′ (recalling that ϕ satisfies (εϕ′)′ = −λ2εϕ ), with curle the two-dimensional

vectorial curl in the ỹe plane, completed by a zero tangential component along the edge.

As in [8], we can write the singular part (7.5) as a gradient in a global way, because Lemmas
8.2 and 8.4 of [8] are (mainly) independent of the operator in consideration. Consequently, in
connection with the splitting (4.12), we have

Theorem 7.3 Assume that s ≥ 1 , the data f belongs to PHs−1(Ω,P) and u is the solution

of problem (1.5). Let σ < s + 1 so that (7.4) holds. Then there exists Φ ∈
◦
H1(Ω) satisfying

−∆Dir
ε Φ ∈ PHσ(Ω,P) such that

u− gradΦ ∈ PHσ+1(Ω,P).

When σ = 0 , the above statement reduces to Theorem 3.5 (ii).

8 Appendix

In this section, we prove some lower estimates for the exponents of singularity for transmission
problems for the Laplacian in dimension two. We have to consider the following situation:

Γ is described in polar coordinates (r, θ) by 0 < θ < ω ( 0 < ω < 2π ) or by 0 ≤ θ < 2π
( ω = 2π ). The interval [0, ω] is divided in J subintervals by 0 = ω0 < ω1 < . . . < ωJ = ω . The
function ε is positive and constant on each subinterval: ε = εj for θ ∈ (ωj−1, ωj) .

The function u is homogeneous in Γ and satisfies

∆Dir
ε u = 0 [ or ∆Neu

ε u = 0 ].

Thus u(r, θ) = rλv(θ) with λ > 0 and v is a linear combination of sinλθ and cosλθ in each
(ωj−1, ωj) satisfying the boundary conditions

v(0) = v(ω) = 0 [ or v′(0) = v′(ω) = 0 ],

and the transmission conditions

[v] = 0 and [εv′] = 0 at θ = ωj .

Under these conditions, we have the following result
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Theorem 8.1

(i) (External edge)
If ω < 2π and J = 2 , then λ > π

2ω .

(ii) (Internal edge)
If ω = 2π and J = 2 , then λ > 1

2 ;

If ω = 2π and J = 3 , then λ > 1
4 .

(iii) If ω < 2π and J ≥ 3 or if ω = 2π and J ≥ 4 , then for any λ0 > 0 there exist ε1, . . . , εJ
and a function u 6= 0 with 0 < λ < λ0 .

Proof. (i) Consider first the case of Dirichlet conditions: The function v is continuous on
[0, ω] , piecewise analytic, vanishes at 0 and ω , and its derivative satisfies ε1v

′(ω−1 ) = ε2v
′(ω+

1 ) .
One can assume that v has a positive maximum in ω∗ ∈ (0, ω) . It follows that v′(ω∗) = 0 , even if
ω∗ = ω1 , because v′ does not change its sign there. In one of the two sectors (0, ω∗) (if ω∗ ≤ ω1 )
or (ω∗, ω) (if ω∗ > ω1 ), the function u therefore satisfies a mixed Dirichlet-Neumann problem
without interface, for which one knows the lowest singularity exponent π/2ω∗ or π/2(ω − ω∗) .
Thus

λ ≥ π

2ω∗
≥ π

2ω1
>

π

2ω
or λ ≥ π

2(ω − ω∗)
≥ π

2(ω − ω1)
>

π

2ω
.

For exterior Neumann conditions, we have v′(0) = v′(ω) = 0 . Since v is an eigenfunction of the
Laplace-Beltrami Neumann problem, it is orthogonal to constants:∫ ω

0

v(θ) ε(θ) dθ = 0.

As ε is positive, v has at least one zero: v(ω∗) = 0 . Once again, on either (0, ω∗) or (ω∗, ω) ,
we obtain a mixed Dirichlet-Neumann problem and the estimate

λ ≥ min
{ π

2ω1
,

π

2(ω − ω1)

}
>

π

2ω
.

(ii) If ω = 2π , we can again use that v is orthogonal to constant functions:∫ 2π

0
vε dθ = 0 . This time, we conclude that v has at least two distinct zeros

0 ≤ ω∗ < ω∗∗ < 2π ; v(ω∗) = v(ω∗∗) = 0 . In the two sectors

Γ∗ = {(r, θ) | ω∗ < θ < ω∗∗} and Γ∗∗ = {(r, θ) | ω∗∗ < θ < 2π + ω∗}

our function u solves therefore the transmission problem with exterior Dirichlet conditions, and
we are back to case (i).

If J = 2 , we can either argue that one of Γ∗ or Γ∗∗ is convex, or that one of the two sectors
contains only one material. Both arguments give the result λ > 1

2 .

If J = 3 , then one of the two sectors contains at most two materials, thus from (i) follows λ > 1
4 .

(iii) For the case J = 4 , we give the following explicit example: let

G1 = (−π4 ,
π
4 ), G2 = (π4 ,

3π
4 ), G3 = ( 3π

4 ,
5π
4 ), G4 = (− 3π

4 ,−
π
4 ).

and
ε1 = ε3 = h and ε2 = ε4 = 1.

Let v be defined as sinλθ in G1 , η cosλ(π2 − θ) in G2 , sinλ(π − θ) in G3 , −η cosλ(π2 + θ)
in G4 . Then u(r, θ) = rλv(θ) is a singular function for our transmission problem if and only if

η = tan
λπ

4
and h = η2.
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We see that λ→ 0 as h→ 0 .

Since u satisfies Dirichlet conditions at θ = 0 and θ = π , the same example solves a 3-material
problem with exterior Dirichlet conditions.

This example can be easily adapted to more general geometries.

Remark 8.2 In the example of the proof of (iii), we have a three-material Dirichlet problem with
a smooth exterior boundary. If we assume homogeneous magnetic properties, we have no type 1
edge singularity for the magnetic field there. The type 2 edge singularity has only regularity H1+δ

for δ < λ0 .
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