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Abstract

The asymptotics of solutions to scalar second order elliptic boundary value problems in
three-dimensional polyhedral domains in the vicinity of anedge is provided in an explicit
form. It involves a family of eigen-functions with their shadows, and the associated edge
flux intensity functions (EFIFs), which are functions alongthe edges. Utilizing the explicit
structure of the solution in the vicinity of the edge we present a new method for the extraction
of the EFIFs calledquasidual function method. It can be interpreted as an extension of the dual
function contour integral method in 2-D domains, and involves the computation of a surface
integral J [R] along a cylindrical surface of radiusR away from the edge as presented in a
general framework in [8]. The surface integralJ [R] utilizes special constructed extraction
polynomials together with the dual eigen-functions for extracting EFIFs.

This accurate and efficient method provides a polynomial approximation of the EFIF
along the edge whose order is adaptively increased so to approximate the exact EFIF. It is
implemented as a post-solution operation in conjunction with the p -version finite element
method. Numerical realization of some of the anticipated properties of theJ [R] are pro-
vided, and it is used for extracting EFIFs associated with different scalar elliptic equations
in 3-D domains, including domains having edge and vertex singularities. The numerical ex-
amples demonstrate the efficiency, robustness and high accuracy of the proposed quasi-dual
function method, hence its potential extension to elasticity problems.

1. Introduction.

1.a The framework

The solutions of elliptic boundary value problems, for example those arising in heat transfer and
elasticity, when posed and solved in non-smooth domains like polygons and polyhedra, have non-
smooth parts. These are described in terms of special singular functions depending on the geome-
try and the differential operators on one hand, and of unknown coefficients depending on the given
right hand side and boundary conditions on the other hand.

Concerning the singular functions, they are extensively covered in the literature. In many cases
like corners in two dimensions or edges in three dimensions,they can be written analytically (see
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for example [12, 3]) or semi-analytically [7]. In other cases like polyhedral corners, there exist
well-known numerical methods for their computation (see for example [2, 17]).

Scalar elliptic boundary value problems in three-dimensional domains (as the heat transfer
problem in engineering practice), contain singular solutions along each of the domain’sedges.
Each such singularity along an edgeE is characterized:

• by anexponentα which belongs to a discrete set{αi, i ∈ N} of eigen-values depending
only on the geometry and the operator, and which determines the level of non-smoothness
of the singularity. Anyeigen-valueαi is computed by solving a 2-D problem.

• by aneigen-functionϕ(α)
0 (θ) which depends on the geometry of the domain and the oper-

ator. These eigen-functions are computed by solving a set of2-D problems.
• by afunctionalong the edgeE , denoted byA(α)(x3) ( x3 is a coordinate along the edge)

and called “Edge Flux Intensity Function” (EFIF) which determines the “amount of energy”
residing in each singularity.

The complete expansion of the solution in the vicinity of an edge is described in [8] as a com-
bination of eigen-functions and their “shadows”. These shadows are new functions appearing in
3-D domains, having no counterparts in 2-D domains as far as homogeneous operators with con-
stant coefficients are concerned. There exists also a sequence of dual eigen-functions and their
dual shadows. Their explicit knowledge is required in our quasi-dual function method for the
computation of the EFIFs.

From the engineering perspective the EFIFsA(α)(x3) when α < 1 are of major importance
because these are correlated to failure initiation. In manysituationsα < 1 when the opening at
the edge is non-convex. For exampleα can be equal to1

2 in the presence of cracks.
This work is motivated by the need to compute generalized stress intensity functions along

edges for elasticity problems in 3-D domains. These are of significant engineering importance in
cracked and V-notched structures, in which the stress intensity functions may (and often do) vary
along the crack front. Present methods for extracting edge stress intensity functions (ESIFs) in
cracked 3-D domains, as the J-integral [5, 14, 16] for example, are limited to plane-strain/stress
assumptions, provide the point-wise value of the ESIF at a given point along the edge, and re-
quire the computation of an area integral containing the singular point (thus may include large
errors when used in conjunction with numerical methods). Furthermore, the point-wise path-area-
independent J-integral in 3-D domains is not exactly related to the mode-I, II and III stress intensity
functions when these vary along the edge. Other methods, as the B- and H-integrals [15], suffer
from the same difficulties as these mentioned above.

Our method as initiated in [8], uses analytic forms of the asymptotic expansion of the dis-
placements and stresses in the vicinity of an edge, and it leads to an algorithm for computing the
ESIFs (provided as afunctionalong the edge and not only pointwise values). In order to explain
the ideas of the implementation of the method and to test its efficiency, we first consider general
scalar second order elliptic problems, homogeneous with constant coefficients. These are simpler
elliptic problems that allow more transparent analytic computations, although they invoke all nec-
essary characteristics of the elasticity system. Thus, thecharacteristics of the solution can be more
easily addressed and the new method for computing the EFIFs can be demonstrated. The next step
will be the computation of ESIFs in isotropic elasticity problems.

1.b The method

Using the eigen-functions and their shadows, a new functional J [R] is introduced (following [8]),
which can be viewed as an extension of the 2-D contour integral (see e.g. [4]) to 3-D domains.
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This new functional, which is a surface integral along a cylindrical surface, enables us to present
the edge flux intensity function explicitly as a function ofx3 (the coordinate along the edge). The
method presented is implemented as a post-processing step in a p -version finite element code
and the numerical performance is documented on several example problems. Using theJ [R]
functional, and newly constructed extraction polynomials, we extract the EFIFs in the vicinity of
any edge (including crack front) in any polyhedron. This method is easily extendable to problems
of 3-D elasticity and is the first method toprovide the functional representation of the EFIFs along
x3 (as opposed to other methods providing pointwise values of the EFIFs along the edge) and is
very accurate, efficient and robust. Most importantly,the method is adaptive, providing a better
polynomial representation of the EFIF as the special hierarchical family of extraction polynomials
is increased. Cases where the EFIF has very large gradients and where edges approach vertices
are considered, and we show the method’s robustness and accuracy for these cases as well.

This paper is organized as follows:

• We start with notations, defining the domain of interest and the different elliptic operators
we consider.

• We describe the asymptotic expansion of the solution in the neighborhood of an edge in
terms of eigen-functions, their shadows, and the structureof the EFIFs. The dual eigen-
functions, and their shadows, which are associated with theprimal eigen-functions are ad-
dressed as well.

• The J [R] integral is then introduced, and the main theorem for extracting the EFIFs is
quoted (the proof can be found in [8]). This integral requires the construction of extracting
polynomials, denoted byB(x3) , and the data on a surface of a cylinder of radiusR with
the edge as its axis. A short explanation on its application in conjunction with the finite
element method is given. We then describe the various problems chosen as test cases for
our computations (for which we provide in Appendices A and B the explicit formulas for
the eigen-functions, duals and shadows). Numerical experimentations are performed to
demonstrate that the computedJ [R] ’s indeed provide the anticipated trends expected by
the theorem.

• Subsequently, a hierarchical family of extraction polynomials is constructed. The hierarchi-
cal family of extraction polynomials is used in many numerical tests to extract the EFIFs.

• Finally, we present two numerical examples where the EFIF has large gradients, and where
the edge approaches a vertex. These examples demonstrate the robustness of the method in
handling realistic geometries in engineering practice.

2. The Model Domain and the Scalar Elliptic Problem.

As a model, we choose a domainΩ such that only one straight edgeE is present. The domain is
generated as the productΩ = G× I where I is the interval [−1, 1] , andG is a plane bounded
sector of openingω ∈ (0, 2π] and radius1 (the case of a crack,ω = 2π , is included), as shown
in Figure 1. Although any radius or intervalI can be chosen, these simplified numbers have been
chosen for simplicity of presentation. In§7. we consider a less elementary example.

The variables inG and I are (x1, x2) and x3 respectively, and the coordinates(x1, x2, x3)
are denoted byx . Let (r, θ) be the polar coordinates centered at the vertex ofG so thatG
coincides with {(x1, x2) ∈ R

2 | r ∈ (0, 1), θ ∈ (0, ω)} . The edgeE of interest is the set
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Figure 1. Model domain of interestΩ .

{x ∈ R
3 | r = 0, x3 ∈ I} . The two flat planes that intersect at the edgeE are denoted byΓ1

and Γ2 . For anyR , 0 < R < 1 , the cylindrical surfaceΓR is defined as follows:

ΓR :=
{
x ∈ R

3 | r = R, θ ∈ (0, ω), x3 ∈ I
}
. (2.1)

Remark 2.1 The methods presented in the paper are restricted to geometries where the edges are
straight lines and the angleω is fixed alongx3 .

The considered operator is an elliptic second order partialdifferential operatorL with con-
stant real coefficients(kij) of the form:

L =

3∑

i=1

3∑

j=1

kij∂i∂j with ∂1 =
∂

∂x1
, ∂2 =

∂

∂x2
, ∂3 =

∂

∂x3
,

where kij = kji form a symmetric matrix3 × 3 (for heat transfer problems these represent the
heat conduction coefficients). Thekij ’s have to satisfy the ellipticity condition, and without loss
of generality k33 is set ask33 = 1 . Denoting the solution byτ(x) , we consider the Dirichlet
problem onΩ {

L(τ) = 0 in Ω
τ = g on ∂Ω,

(2.2)

where g is the trace of a given function belonging toH1(Ω) . We assume that the Dirichlet
boundary conditions are homogeneous onΓ1 and Γ2 , i.e.:

g(r, 0, x3) = g(r, ω, x3) = 0. (2.3)

Note that all methods presented herein carry over to Neumannor mixed homogenous boundary
conditions also.

For demonstration purposes three specific operators are considered: the Laplace operator,
kij = δij , a general operator withk11 = 5, k22 = 4 , k12 = −4 and k13 = k23 = 0 and a gen-
eral operator having also mixed derivatives in thex3 direction with k11 = k22 = 1 , k13 = −0.5
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and k12 = k23 = 0 . Two domains are considered as benchmark domains, namely one having
ω = 3π/2 and the other one is a cracked domain,ω = 2π . Combining the two different domains
and three different operators we define five specific Cases according to Table 1.

Case # ω The Operator
k11 k22 k33 k12 k13 k23

Case 1 3π/2 1 1 1 0 0 0
Case 2 3π/2 5 4 1 −4 0 0
Case 3 2π 1 1 1 0 0 0
Case 4 2π 5 4 1 −4 0 0
Case 5 2π 1 1 1 0 −0.5 0

Table 1. Notation of the various Cases considered as model problems

3. The Singular Solutions in the Vicinity of the Edge.

The asymptotic representation of the exact solutionτ for the problem (2.2) in the neighborhood
of the edgeE relies on splitting the operatorL into three parts (see [13, 9, 6]):

L = M0(∂1, ∂2) +M1(∂1, ∂2)∂3 +M2∂
2
3 , (3.1)

with M0 a second order operator,M1 a first order operator andM2 a constant. This splitting
allows to consider forτ an Ansatz of the form:

τ̃ =
∑

j≥0

∂j
3A(x3)Φj(x1, x2), (3.2)

which should solve the homogeneous equationL(τ̃ ) = 0 together with the lateral boundary
conditions τ̃(r, 0, x3) = τ̃(r, ω, x3) = 0 , cf (2.3). After inserting (3.2), the equationL(τ̃) = 0
becomes:

∑

j≥0

∂j
3A(x3)M0Φj +

∑

j≥0

∂j+1
3 A(x3)M1Φj +

∑

j≥0

∂j+2
3 A(x3)M2Φj = 0 (3.3)

and after rearranging:

A(x3)M0Φ0 + ∂1
3A(x3)(M0Φ1 +M1Φ0)+

+
∑

j≥2

∂j
3A(x3)(M0Φj +M1Φj−1 +M2Φj−2) = 0. (3.4)

We want that equation (3.4) holds for any smooth functionA(x3) . Thus, the functionsΦj have
to satisfy the three equations below:





M0Φ0 = 0

M0Φ1 +M1Φ0 = 0

M0Φj +M1Φj−1 +M2Φj−2 = 0, j ≥ 2

(x1, x2) ∈ G (3.5)
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accompanied by the homogeneous Dirichlet boundary conditions on the two facesθ = 0, ω :

Φj(r, 0) = Φj(r, ω) = 0. (3.6)

The first partial differential equation in (3.5) with (3.6) has solutionsΦ0 of the form

Φ0 = rαϕ0(θ)

with α in a discrete set{αi, i ∈ N} of positive numbers. These solutions are refered to as the
two-dimensionalprimal singular functions. They are nothing but the singular solutions associated
with the eigen-valueα of the boundary value problem generated over the 2-D domainG .

The second PDE in (3.5) with homogeneous Dirichlet boundaryconditions (3.6) generates the
function Φ1 which depends onΦ0 and is of the form:Φ1 = rα+1ϕ1(θ) . Finally, the solutions
of the third equation of (3.5) with conditions (3.6) form thesequenceΦj :

Φj = rα+jϕj(θ). (3.7)

The Φj , j ≥ 1 , are called the“shadow” functionsassociated with the leading functionΦ0 . To

each valueαi of α corresponds a sequence(Φj) which we denote from now on by(Φ(αi)
j ) :

Φ
(αi)
j = rαi+jϕ

(αi)
j (θ) j = 0, 1, . . . (3.8)

Thus, for each eigen-valueαi and each coefficientA(αi) (smooth enough) the 3-D function:

τ̃ =
∑

j≥0

∂j
3A

(αi)(x3) r
αi+jϕ

(αi)
j (θ) (3.9)

solves the homogeneous equationL(τ̃) = 0 together with the lateral homogeneous Dirichlet
conditions. It can be shown that the overall solutionτ of problem (2.2) can be expanded as:

τ =
∑

i≥1

∑

j≥0

∂j
3A

(αi)(x3) r
αi+jϕ

(αi)
j (θ), as r → 0, (3.10)

whereA(αi)(x3) is the Edge Flux Intensity Function (EFIF) associated with the ith eigen-value.
Solutions of (3.5)-(3.6) associated with thenegative eigen-valuesare called thedual singular

solutions, and are denoted byΨ . Since the operatorL is self-adjoint, for anyαi the number
−αi is also an eigen-value and there existsψ(αi)

0 such thatr−αiψ
(αi)
0 (θ) solves the first equation

of (3.5). For normalization reasons, we set, for some real coefficient c(αi)
0 :

Ψ
(αi)
0 = c

(αi)
0 r−αiψ

(αi)
0 (θ) (3.11)

where Ψ
(αi)
0 is the dual leading eigen-solution and

Ψ
(αi)
j = c

(αi)
0 r−αi+jψ

(αi)
j (θ) (3.12)

are the shadow dual eigen-solutions. Computation of primaland dual eigen-functions for Cases
1-4 is provided in Appendix A, and for Case 5 in Appendix B. Theoretical details and rigorous
mathematical formulation is provided in [8].

Remark 3.1 Operators for whichM1 = 0 imply that the Φj and Ψj of odd rank are zero:

Φ
(αi)
j = Ψ

(αi)
j = 0 , j = 1, 3, 5, . . .
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4. The Extraction Method - The J [R] Integral.

For each eigen-valueαi , a set ofquasidualsingular functionsK(αi)
m [Bm] are constructed where

m is a natural integer called theorder of the quasidual function, andBm(x3) is a function (we
choose it to be a polynomial) calledextraction polynomial.

K(αi)
m [Bm]

def
=

m∑

j=0

∂j
3Bm(x3)Ψ

(αi)
j . (4.1)

By using the quasidual functions, one can extract a scalar product ofA(αi)(x3) with Bm(x3) on
E . This is accomplished with the help of theanti-symmetricboundary integralJ [R] , over the
surfaceΓR (2.1). We defineJ [R](u, v) to be:

J [R](u, v)
def
=

∫

ΓR

(Tu · v − u · Tv) dS =

∫

I

∫ w

0
(Tu · v − u · Tv)|r=RRdθ dx3 (4.2)

where I ≡ E (the edge) alongx3 axis (Figure 1). T is the radial Neumann trace operator
related to the operatorL :

T
def
=







k11 k12 k13

k21 k22 k23

k31 k32 1





∂1

∂2

∂3








T 


cos θ
sin θ
0


 . (4.3)

With the above definition we have the following theorem [8]:

Theorem 4.1 TakeBm(x3) such that

∂j
3Bm(x3) = 0 for j = 0, ....,m − 1 on∂I (4.4)

then, if the EFIFsA(αi) in the expansion(3.10)are smooth enough:

J [R](τ,K(αi)
m [Bm]) =

∫

I

A(αi)(x3)Bm(x3) dx3 + O(Rα1−αi+m+1), as R→ 0. (4.5)

Here α1 is the smallest of the eigen-valuesαi , i ∈ N .

Theorem 4.1 allows a precise determination of
∫
I
A(αi)(x3)Bm(x3) dx3 by computing (4.4)

for two or threeR values and using Richardson’s extrapolation asR→ 0 .

Remark 4.2 For the first EFIF A(α1) , we obtain the highest convergence rateO(Rm+1) . If,
moreover, theΦj and Ψj of odd rank are zero, cf Remark 3.1, there holds the followingim-
provement of Theorem 4.1: For anyeveninteger m , condition(4.4) implies that the asymptotic
equality(4.5)holds modulo a remainder inO(Rm+2) instead ofO(Rm+1) .
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4.a The quasidual extraction functions.

To confirm that the numerical examples provide the results predicted by Theorem 4.1 we consider
the following options of the quasidual extraction functions:

K
(α1)
0 = B0(x3)Ψ

(α1)
0 (r, θ)

K
(α1)
1 = B1(x3)Ψ

(α1)
0 (r, θ) + ∂3B1(x3)Ψ

(α1)
1 (r, θ)

K
(α1)
2 = B2(x3)Ψ

(α1)
0 (r, θ) + ∂3B2(x3)Ψ

(α1)
1 (r, θ) + ∂2

3B2(x3)Ψ
(α1)
2 (r, θ)

K
(α1)
3 = B3(x3)Ψ

(α1)
0 (r, θ) + ∂3B3(x3)Ψ

(α1)
1 (r, θ) + ∂2

3B3(x3)Ψ
(α1)
2 (r, θ) + ∂3

3B3(x3)Ψ
(α1)
3 (r, θ)

According to Theorem 4.1, the difference between the integral J [R](τ,K
(αi)
m [Bm]) and the

moment
∫
I
A(αi)(x3)Bm(x3) dx3 should be of the order ofRm+1 , which is the convergence

rate with respect toR . To obtain the “right” convergence rate, the following conditions should be
satisfied for the extraction polynomialsB0 , B1 , B2 and B3 according to condition (4.4):

B0 : No condition required. (4.6)

B1 : B1(+1) = B1(−1) = 0 (4.7)

B2 : B2(+1) = B2(−1) = ∂3B2(+1) = ∂3B2(−1) = 0 (4.8)

B3 : B3(+1) = B3(−1) = ∂3B3(+1) = ∂3B3(−1) = ∂2
3B3(+1) = ∂2

3B3(−1) = 0. (4.9)

Since B0 does not have to satisfy any condition, we chooseB0(x3) = 1 . We further choose
B1(x3) = x2

3 − 1 , B2(x3) = (x2
3 − 1)2 and B3(x3) = (x2

3 − 1)3 which satisfy (4.7), (4.8) and
(4.9) respectively.

The exact solutionτ being unknown in general, we use instead a finite element approximation
τFE and the integral (4.2) is performed numerically using a Gaussian quadrature of ordernG :

J [R](τ,K(αi)
m [Bm]) =

nG∑

k=1

nG∑

`=1

ω

2
wkw`

(
TτFE ·K(αi)

m [Bm] − τFE · TK(αi)
m [Bm]

)
ξk,η`

(4.10)

where wk are the weights andξk and η` are the abscissas of the Gaussian quadrature. The
Neumann trace operator,T , operates on bothτ and K(αi)

m [Bm] . For Tτ we use the numerical
approximationsTτFE computed by finite elements. We extract in the post-solutionphase of
the FE analysisτFE , ∂1τFE , ∂2τFE , and ∂3τFE (note that such extractions are possible without
problems thanks to thep -version of FEM) whereasTK(αi)

m [Bm] is computed analytically. These
values are evaluated at the specific Gaussian points when theintegral is computed numerically.

The numerical errors associated with the numerical integration and with replacing the exact
solution by the finite element solution are negligible, as shown for one example problem in Ap-
pendix C.

4.b Analytical Solutions for Validating the J [R] Integral Method

We generate herein analytical solutions against which our numerical experimentations are com-
pared. The exact solution associated with thei -th eigen-pair,τ (αi)

ex is:

τ (αi)
ex =

∑

j≥0

∂j
3A

(αi)(x3)Φ
(αi)
j (r, θ) (4.11)
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So if A(αi)(x3) is a polynomial of orderN , i.e. A(αi)(x3) = a0 + a1x3 + · · · + aNx
N
3 then

(4.11) has a finite number of terms in the sum, because theN +1 and higher derivatives are zero.
Thus, (4.11) becomes:

τ (αi)
ex =

N∑

j=0

∂j
3A

(αi)(x3)Φ
(αi)
j (r, θ). (4.12)

Recall that, by the mere construction of theΦ(αi)
j , there holdsLτ (αi)

ex = 0 . If we specify over
the entire boundary∂Ω the Dirichlet boundary conditiong as the trace of (4.12), the solutionτ
of problem (2.2) coincides with (4.12) at any pointx ≡ (r, θ, x3) .

We coose two examples of boundary conditions, each having a different N . The first BC,
which is denoted by(BC2) is the one for which we takeN = 2 and

A(α1)(x3) = 1 + x3 + x2
3 (4.13)

i.e., a0 = a1 = a2 = 1 . This means that we prescribe the Dirichlet condition on∂Ω :

(BC2) τ (α1)
ex

∣∣
∂Ω

= (1 + x3 + x2
3)Φ

(α1)
0 (r, θ) + (1 + 2x3)Φ

(α1)
1 (r, θ) + 2Φ

(α1)
2 (r, θ).

The second boundary condition which we consider is forN = 4 , is denoted by(BC4) for which
we take

A(α1)(x3) = 5 + 4x3 + 9x2
3 + 3x3

3 + x4
3 (4.14)

i.e. a0 = 5 , a1 = 4 , a2 = 9 , a3 = 3 and a4 = 1 . This means that we have the Dirichlet
condition:

(BC4)

τ
(α1)
ex |∂Ω = (5 + 4x3 + 9x2

3 + 3x3
3 + x4

3)Φ
(α1)
0 (r, θ)

+ (4 + 18x3 + 9x2
3 + 4x3

3)Φ
(α1)
1 (r, θ)

+ (18 + 18x3 + 12x2
3)Φ

(α1)
2 (r, θ)

+ (18 + 24x3)Φ
(α1)
3 (r, θ) + 24Φ

(α1)
4 (r, θ).

By the uniqueness of solutions, the solution of problem (2.2) with the boundary condition(BC2)

and (BC4) coincides withτ (α1)
ex for the choice (4.13) and (4.14) ofA(α1) , respectively. This

means that our exact solution contains only one edge singularity (and no vertex singularities).
The domains have been discretized by using ap -FEM mesh, with geometrical progression

towards the singular edge with a factor of 0.15, having 4 layers of elements. In thex3 direction, a
uniform discretization using 5 elements has been adopted. In Figure 2 we present the meshes used
for opening angles ofω = 3π/2 and ω = 2π (crack).

4.c Numerical Tests UsingK
(α1)
0 for Cases 1 to 4

When using the quasidual functionK(α1)
0 with any chosenB0(x3) , according to Theorem 4.1

the convergence ofJ [R] to J [0] should beO(R2) for Cases 1-4 (for whichΦ1 = Ψ1 = 0 ,
cf Remark 4.2). We perform numerical tests for Cases 1-4 takingthe boundary condition(BC2)
and computingJ [R] at different values ofR .

According to equation (4.5), we have:

J [0] = lim
R→0

J [R](τ,K
(αi)
0 [B0]) =

∫

I

A(αi)(x3)B0(x3)dx3
def
= Jex. (4.15)
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Figure 2. The p -FEM models.

With the fixed extraction polynomialB0(x3) = 1 , we find for A(x3) = 1+x3 +x2
3 andK(α1)

0 :

Jex =

∫ 1

−1
(1 + x3 + x2

3) · 1 dx3 =
8

3
.

We have computedJ [R] according to formula (4.10) with 10 integration points for the quadrature
in both θ and x3 directions and with the degreep = 6 in the finite element analysis. It was
found out that taking 32 integration points andp = 8 does not improve the results considerably.

We summarize the results in Table 2, and plot in Figure 3log(Jex−J [R]) vis. log(R) , which
yields the numerical convergence rate.

Case 1 Case 2 Case 3 Case 4

R = 0.9 0.544627 0.857214 0.393094 0.704199
R = 0.8 0.639754 0.886932 0.519466 0.764039
R = 0.7 0.724304 0.913497 0.632346 0.819377
R = 0.6 0.797786 0.936658 0.730629 0.868391
R = 0.5 0.859434 0.955926 0.812665 0.907785
R = 0.4 0.909614 0.971456 0.879250 0.939072
R = 0.3 0.949535 0.984096 0.932802 0.967113
R = 0.2 0.977493 0.992844 0.970071 0.983999
R = 0.1 0.994679 0.998349 0.993188 0.996935

Table 2. Values ofJ [R]/Jex for (BC2) , usingK(α1)
0 and B0(x3) = 1 .

It is easily visible in Figure 3 that the convergence rate in Cases 1-4 isO(R2) as expected
(on each graph the line of slope2 passing through the first point of the graph has been plotted).

4.d Numerical Tests usingK
(α1)
0 to K

(α1)
3 for Case 5

Taking K
(α1)
0 up to K

(α1)
m , where highestm is 3, and with extraction polynomialsBm(x3)

that satisfy (4.8), the convergence ofJ [R] to the exact value should beO(Rm+1) for Case 5.
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Figure 3. Convergence rates ofJ [R] for (BC2) , with K
(α1)
0 and B0 = 1 .

K
(α1)
0 K

(α1)
1 K

(α1)
2 K

(α1)
3

Bm(x3) 1 x2
3 − 1 (x2

3 − 1)2 (x2
3 − 1)3

Jex 8/3 −8/5 128/105 −64/63

R = 0.9 0.452184 0.170991 1.066583 1.291903
R = 0.8 0.549460 0.334150 1.093614 1.161184
R = 0.7 0.638916 0.483345 1.094800 1.082724
R = 0.6 0.719399 0.616099 1.080202 1.038806
R = 0.5 0.789221 0.729563 1.057599 1.015371
R = 0.4 0.849224 0.823832 1.034622 1.004237
R = 0.3 0.901877 0.900601 1.017906 1.001634
R = 0.2 0.943800 0.955126 1.005847 1.000079
R = 0.1 0.977265 0.989361 1.001515 1.000680

Table 3. Values ofJ [R]/Jex , for Case 5 with(BC2) .
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Figure 4. Convergence rates ofJ [R] for Case 5 with(BC2) using K(α1)
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We have performed numerical tests taking the boundary condition (BC2) , and computing
J [R] at different values ofR with different choices of extraction polynomialsB . We summarize
the results in Table 3, and plotlog(Jex − J [R]) vis. log(R) in Figure 4.

The results forK(α1)
0 can be compared with those for Cases 1 - 4 in Table 2 and Figure 3.

We see the lower convergence rate due to the presence of operator M1 , but this is dramatically
improved by passing to the higher order quasidual functionsK

(α1)
1 to K

(α1)
3 .

We can see in Figure 4 that the convergence rate ofJ [R] in Case 5 forK(α1)
m and Bm is at

least of orderRm+1 as we expected.

5. EFIF Extraction using Jacobi Polynomials

5.a Polynomial and non-polynomial EFIF

We are interested in extracting the EFIFA(αi)(x3) . Because its functional representation is un-
known, its polynomial approximation is sought. We would like to construct an adaptive class of
orthonormal polynomials with a given weightw(x3) = (1−x2

3)
m so to representBm(x3) . This

suggests the use of Jacobi polynomials as a natural basis. Inthis way, if A(αi)(x3) is a polynomial
of degreeN , it can be represented by a linear combination of Jacobi polynomials as:

A(αi)(x3) = ã0J
(0)
m + ã1J

(1)
m (x3) + · · · + ãNJ

(N)
m (x3) (5.1)

where J (k)
m is the Jacobi polynomial of degreek and orderm , i.e. associated with the weight

w(x3) = (1 − x2
3)

m , which is denoted in literature byP (m,m)
k . There holds the following

important orthogonality property [1, pp. 773-774] :

∫ 1

−1
(1 − x2

3)
mJ (n)

m (x3)J
(k)
m (x3) dx3 = δnkhk (5.2)

with some real coefficientshk (depending onm ). The hierarchical family of extraction poly-
nomials, denoted byBJ (k)

m (x3) , has to be chosen so to satisfyBJ (k)
m (±1) = ∂3BJ

(k)
m (±1) =

· · · = ∂m−1
3 BJ

(k)
m (±1) = 0 . To fulfil this, we set

BJ (k)
m (x3) = (1 − x2

3)
m J

(k)
m (x3)

hk
, (5.3)

so that, according to (5.2), we retrieve the coefficientsãk in (5.1) as a simple scalar product:

∫ 1

−1
A(αi)(x3)BJ

(k)
m (x3) dx3 = ãk k = 0, 1, . . . , N. (5.4)

Thus, by virtue of Theorem 4.1, theJ [R] integral evaluated for the quasi-dual functionsK(αi)
m [Bm]

with the extraction polynomialsBm = BJ
(k)
m , k = 0, 1, . . . , N provide approximations of the

coefficients ãk .
Of course, in generalA(αi)(x3) is an unknown function and we wish to find a projection

of it into spaces of polynomials. It is expected that as we increase the polynomial space, the
approximation is better.
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The EFIFA(αi)(x3) has an infinite Fourier expansion in the basisJ (k)
m with a sequence of

coefficentsãk :
A(αi)(x3) =

∑

k≥0

ãkJ
(k)
m (5.5)

converging in the weighted spaceL2[w] with w = (1−x2
3)

m . For each fixedn , the computation
of the n + 1 coefficients ã0, . . . , ãn provides the orthogonal projection ofA(αi)(x3) into the
space of polynomials of degree up ton in the weighted spaceL2[w] . To accomplish this we use

the n+1 extraction polynomialsBJ (0)
m (x3), . . . , BJ

(n)
m (x3) defined in (5.3), so that there holds

according to (5.2):

∫ 1

−1
A(αi)(x3)BJ

(k)
m (x3) dx3 = ãk k = 0, 1, . . . , n. (5.6)

If we want to increase the space in whichA(αi)(x3) is projected, all which is needed is the
computation of (5.6) fork = n+ 1 . This way: Anew(x3) = Aprevious(x3) + ãn+1Jn+1(x3) .

5.b Jacobi Extraction Polynomials of Order 2

Since they satisfy (4.8), and, a fortiori, (4.7) and (4.6), the Jacobi extraction polynomialsBJ (k)
2

can be combined with the dual singular functionsK(αi)
0 , K(αi)

1 and K(αi)
2 . There holds [1, pp.

773-774]:

J
(k)
2 (x3) =

1

k2 + 7k + 12

k∑

l=0

(k + l + 4)!

2ll! (k − l)! (2 + l)!
(x3 − 1)l (5.7)

and the constanthk in (5.2) is equal to

hk =
25(k + 1)(k + 2)

(2k + 5)(k + 3)(k + 4)
(5.8)

Inserting (5.8) and (5.7) in (5.3), we finally obtain:

BJ
(k)
2 (x3) =

(2k + 5)(k + 3)(k + 4)

25(k + 1)(k + 2)

(1 − x2
3)

2

k2 + 7k + 12

k∑

l=0

(k + l + 4)!

2ll! (k − l)! (2 + l)!
(x3 − 1)l. (5.9)

5.c Numerical results for (BC4) using K
(α1)
2 with Jacobi Extraction Polynomials

For the benchmark problem with boundary conditions(BC4) for which the exact EFIF is the

polynomial (4.14) of degree 4 and using the extraction polynomials BJ (0)
2 (x3), . . . , BJ

(n)
2 (x3) ,

where 0 ≤ n ≤ 4 , we extract the EFIF for Case 2 atR = 0.05 : We have performed the
computation with15 integration points andp = 8 in the finite element mesh, and present in
Figure 5 the relative error in percentage between the extracted EFIF and the exact one. As may be
seen for the family of degree4 we indeed fully recover the exact EFIF.

Of course, if n > 4 we should fully recover the EFIF. As one increases the order of the
hierarchical family, the results do not improve, but we obtain an oscillatory behavior of the solution
due to numerical errors (the finite element solution is not exact), with a very small amplitude as
demonstrated in Figure 6.
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Figure 5. Relative error (%) of the extracted EFIF atR = 0.05 usingK(α1)
2 and the hierarchical

family BJ (k)
2 (x3) , k ≤ n , for n = 0, 1, 2, 3, 4 .
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To illustrate the convergence of the extracted values as a function of R , we present in Table
4 the monomial coefficients of the extracted polynomial atR = 0.9, 0.5, 0.2, 0.05. Then we use
Richardson’s extrapolation, knowing that the error behaves as O(R4) , cf Remark 4.2, and the
coefficients atR = 0.9, 0.5 to extrapolate toR = 0 . These extrapolation results are shown in
the last column of Table 4. The relative error in the extrapolated EFIF using the data atR = 0.9,
0.5 is compared with that obtained atR = 0.5 and 0.05 in Figure 7.

Exact R = 0.9 R = 0.5 R = 0.2 R = 0.05
Extrapolated

using
R = 0.9, 0.5

a0 5 5.920806968 5.089253508 5.005993235 5.000288235 5.001699446
a1 4 4.004545148 4.002303539 4.002751475 3.998527960 4.002067521
a2 9 9.047407703 9.008253090 9.001724824 8.989161317 9.004130510
a3 3 2.985298783 2.995871625 3.001625541 3.005167695 2.996984837
a4 1 0.904830390 0.983905020 1.007098452 1.025721321 0.992230769

Table 4. Computed coefficientsai for (BC4) , usingK(α1)
2 and BJ (k)

2 (x3) , k ≤ 4 .
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Figure 7. Relative error (%) of the extracted EFIF atR = 0.5, 0.05 and extrapolating from data
at R = 0.9, 0.5. EFIF computed usingK(α1)

2 and the hierarchical familyBJ (k)
2 (x3) , k ≤ 4 .

By extracting the EFIF from the FE solution away from the singular edge (where usually
the numerical data is polluted), we demonstrate that a very good approximation is obtained by
Richardson’s extrapolation, taking into consideration that the error behaves asO(R4) . Practi-
cally, the relative error in the extrapolated EFIF is as obtained very close to the singular edge
(R = 0.05 ), and much better than the values obtained when extraction is performed atR = 0.5 .

6. A Polynomial Representation of a Non-Polynomial EFIF

We have demonstrated so far that the quasi-dual extraction method performs very well if the exact
EFIF is a polynomial. A natural question is - what if the EFIF is not a polynomial? In this case
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we use the hierarchical algorithm for polynomial space enrichment described in§5.a. Herein we
investigate the performance of such hierarchical space enrichment for the case where the exact
EFIF is a general function, and furthermore, it contains high gradients at the ends of the edge. For
example, consider Case 2, where the EFIF is a function of the form:

A(α1)(x3) =
sinx3

(d− x2
3)

(6.1)

where d is a given number. Asd approaches 1, the EFIF approaches infinity at the vertices
x3 = ±1 . We chose three values ofd = 2, 1.5, 1.05 .

Consider the following problem:
{
L(τ) = ∂2

3A
(α1)(x3)Φ

(α1)
0 (r, θ) in Ω

τ = A(α1)(x3)Φ
(α1)
0 (r, θ) on ∂Ω,

(6.2)

for which the exact solution is simplyτex = A(α1)(x3)Φ
(α1)
0 (r, θ) .

Remark 6.1 Theorem 4.1 does not apply stricto sensu to the solution of problem(6.2). Never-
theless it can be proved thatJ [R](τ,K

(αi)
m [B]) yields an approximation of the moment ofA(α1)

modulo a positive power ofR .

6.a Finite element approximation

A refined finite element model graded towardsx3 = ±1 was generated as shown in Figure 8. It
has 25 elements in thex3 direction and a total of 800 solid finite elements.

Y
X

Z

Figure 8. The p -FEM model for non-polynomial EFIFs with large gradients atx3 = ±1 .

To evaluate the accuracy of the extracted EFIFs, one has firstto examine the numerical results,
τFE and its derivatives, especially for solutions having largegradients. The graphs in Figure
9 present the relative error inτFE and ∂rτFE in percentage, extracted from the finite element
solution at p = 8 for d = 2, 1.5, 1.05 . These graphs are along the lineR = 0.05 , θ = 135◦

and −1 ≤ x3 ≤ 1 .
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The FE results have a relative error of about 3% for−0.8 ≤ x3 ≤ 0.8 , and around 17% for
0.8 < |x3| < 1 for the case whend = 1.05 . This in turn will perturb the extraction of the EFIF
by that order of magnitude when using the quasi-dual extraction technique, as we show in the
sequel. We will also observe that the EFIFs are computed withsimilar accuracy and the extraction
technique does not magnify the numerical error but the opposite. For d = 2 , 1.5 , the relative
error in the function and its derivatives is very small (lessthan 0.7%) in all the range. Therefore,
the extraction of the EFIFs is expected to provide excellentresults.
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Figure 9. Relative error in FE solution and its derivatives (%) atp = 8 for r = 0.05 , θ = 135◦ ,
x3 ∈ [−1, 1] for the three problems defined byd = 2 , 1.5 and 1.05 .

6.b Extraction of EFIFs

Using K
(α1)
2 and the hierarchical familyBJ (k)

2 (x3) , we extract the EFIFs atR = 0.05 using
the solution atp = 8 and 54 Gauss integration points (due to the strong gradientsof the solutions
we used a higher integration scheme). We also checked with 94Gauss integration points that the
integration error in evaluatingJ [R] is negligible.

Figure 10 presents the exact EFIF and the extracted EFIF using BJ
(k)
2 (x3) , k ≤ n , of

increasing ordern obtained atR = 0.05 . Notice the different ordinate scales inside the three
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graphs. One may easily observe the strong gradients of the EFIF at x3 = ±1 , especially for the
case whered = 1.05 .

Relative errors between the extracted EFIF and the exact value are presented in Figure 11
(here, again, the ordinate scales are different from each other). For all cases ofd , the EFIF is
progressively better approximated away from the large gradients (≈ −0.85 ≤ x3 ≤ −0.85 ) as
the order of the extraction polynomials(n) is increased.

At n = 19 the extracted EFIF has less than 3% relative error for the case whend = 1.05 and
less than 0.5% relative error for the casesd = 1.5 and d = 2 .

The large pointwise errors in the close neighborhood of the high gradients is expected.

6.c Localized Extraction of EFIFs

In the vicinity of a vertex (the intersection of the edge withanother edge) it is a-priori known
that the EFIF may have large gradients approaching either zero, infinity or a constant value as
ρ→ 0 ( ρ denotes the distance to the vertex). A detailed explanationon the decomposition of the
solution in the vicinity of the edge as it approaches a vertexcan be found in [10]. The asymptotic
solution in the vicinity of the edge as presented in section 2is therefore irrelevant on the entire
edge I . It is expected therefore that better results can be obtained by approximating the EFIFs
by polynomials onan inner partof the edge, for example ata < x3 < b where−1 < a, b < 1 .
This localized extraction strategy is a slight modificationof the J [R] integral, so that instead of
integrating along a cylinder having its axisI = [−1, 1] , the integration is be performed along
a cylinder with the axis[a, b] . The modification is easily implemented by a transformationof
variables.

The localized extraction strategy has been investigated onCase 2 for problem (6.2) with the
RHS as prescribed in by (6.1) andd = 1.05 , for which the exact EFIF is given by:

A(α1)(x3) =
sinx3

(1.05 − x2
3)
. (6.3)

Using K
(α1)
2 and the hierarchical familyBJ (k)

2 (x3) and the finite element model shown in
Figure 8, we extract the EFIFs at R=0.05 using the solution atp = 8 and 54 Gauss integration
points. The EFIFs are computed at three intervals on the edge: −1 < x3 < 1 , −0.8 < x3 < 0.8
and −0.6 < x3 < 0.6 .

In Figure 12 we present the relative error in the extracted EFIF using BJ (k)
2 (x3) of order 4,

11 and 15. As expected, when the selected interval for EFIF extraction is reduced and confined in
a region away from the high gradients, a much better approximation is obtained.
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Figure 10. Exact and extracted EFIF, usingK(α1)
2 and extraction polynomials of degree≤ n
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Figure 12. Relative error (%) of extracted EFIF with the global and two partial extractions.
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7. A Domain with Vertices.

In order to examine the vertex influence on EFIF extraction weconsider a more realistic domain
constructed as an extension of the one presented in Figure 1 by adding two cylinders at±1 as
shown in Figure 13. The added cylinders areΩ(1) = D × I(1) and Ω(−1) = D × I(−1) where
I(1) is the interval [1, 1.5] , I(−1) is the interval [−1.5,−1] and D is the disc of radius1 .

x1

x2

x3

r

θ

Γ1

Γ2

The Edge E

ω

Figure 13. Schematic realistic domain with two Fichera corners.

The domain has been discretized by using ap -FEM mesh, with geometrical progression to-
ward r = 0 with a factor of 0.15, having four layers of elements and towards x3 = ±1 , having
45 layers of elements. The discretization of the domain is presented in Figure 14.

We consider the Laplace equation. Homogeneous Neumann boundary conditions are pre-
scribed over the domain’s boundary, except for the following:

∂τ

∂r
= 1 onΓ (7.1)

τ = 0 onΓ1 ∪ Γ2 (7.2)

where:
Γ :=

{
x ∈ R

3 | r = 1, θ ∈ (0, ω), x3 ∈ (−1.5, 1.5)
}
, (7.3)

as shown in Figure 14. Under these boundary conditions, vertex singularities arise at(r, θ, x3) =
(0, 0,−1) and (r, θ, x3) = (0, 0, 1) and the exact EFIF is unknown. It can be expected that the
EFIF tends to infinity at the vertices.

Using the extraction polynomialsBJ (0)
2 , . . . , BJ

(k)
2 , where 4 < k < 15 , we extract the

EFIF for Case 1 atR = 0.05 on three intervals on the edge:−1 < x3 < 1 , −0.9 < x3 < 0.9
and −0.8 < x3 < 0.8 . These are presented in Figure 15. It can be observed that theEFIFs
extracted on−1 < x3 < 1 are influenced by the vertex singularities atx3 = ±1 .
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Figure 14. The boundary conditions (7.1)-(7.2) applied on the FE model.

8. Summary and Conclusions.

The EFIF extraction method presented herein is an extensionof the 2-D contour integral method
to 3-D domains, based on the mathematical framework which ispresented in [8]. The method
provides a functional (polynomial) representation of the EFIF along the edge. This accurate and
efficient method is implemented as a post-solution operation in conjunction with thep -version
finite element method.

A hierarchical family of extraction polynomials was constructed, based on Jacobi orthogonal
polynomials. The quasi-dual function method, with the use of the ”hierarchial family of polyno-
mials” becomes adaptive in the sense that it uses a simple procedure to increase the degree of the
extracted EFIF polynomial, thus enabling a reliable and efficient determination of EFIFs.

Analytical solutions have been constructed against which the extracted EFIFs were compared.
As shown, the relative errors of the extracted EFIF were lessthan 1% , when the degree of the
extracted EFIF polynomials is determined by an adaptive method, and Richardson extrapolation
was used.

The extraction method uses finite element solutions and Gauss quadrature for the numerical
integration. Both the finite element solution and the Gauss quadratures involve numerical errors.
The errors were monitored and the results presented in Appendix C show that both the FEM errors
and the numerical quadrature influence the accuracy of the extracted EFIF very little, when a high
polynomial degree is used in the FEM approximation and the quadrate order is at least 10.

We also demonstrated that in the presence of vertices, and steep gradients in the EFIFs, one
may use the localized extraction method when applying theJ [R] integral, thus improving the
accuracy over the sub-intervals of the edge where the EFIF are of interest.

The results presented herein indicate that the method proposed for EFIF extraction is accurate
and efficient. It is being extended to elastic problems in polyhedral domains where the edge stress
intensity functions (ESIFs) are described by a1 × 3 vector associated with eigen-functions and
their shadows. Although technically more cumbersome, samesteps as presented herein carry over
to the elastic Navier-Lamé system of equations. The Navier-Lamé operator (represented by a
3 × 3 matrix containing derivatives) is being split into three matrices, based on which the eigen-
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functions their duals and shadows are determined analytically for isotropic materials. These may
contain complex eigen-pairs appearing in conjugates. Using the eigen-pairs, their duals and the
associated shadows, in conjunction with the developed polynomial extraction functions presented
herein, theJ [R] integral can be applied so to obtain ESIFs. Extension of thiswork to traction
free boundary conditions associated with elastic problemsof engineering importance (according
to the mentioned milestones) will be reported in a subsequent paper. These ESIFs are of particular
interest in three dimensional elastic domains along the front of a crack or a V-notch, because they
are used in failure laws (see e.g. [11, 18]).

25



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

x
3

E
F

IF

Polynomial Degree = 4
Polynomial Degree = 7
Polynomial Degree = 11
Polynomial Degree = 15

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

x
3

E
F

IF

Polynomial Degree = 4
Polynomial Degree = 7
Polynomial Degree = 11
Polynomial Degree = 15

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

x
3

E
F

IF

Polynomial Degree = 4
Polynomial Degree = 7
Polynomial Degree = 11
Polynomial Degree = 15

Figure 15. Top: EFIF extracted on−1 < x3 < 1 . Middle: EFIF extracted on−0.9 <
x3 < 0.9 . Bottom: EFIF extracted on−0.8 < x3 < 0.8 . All using the hierarchical extraction
polynomials of degreek = 4, 7, 11, 15 , with K

(α1)
2 at R = 0.05 .
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Appendix A
The Primal and Dual Eigen-functions and Their Shadows for Cases 1-4.

For the Cases 1 - 4 the operatorL can be split as in (3.5) with:

M0 = k11∂1∂1 + 2k12∂1∂2 + k22∂2∂2, M1 = 0, M2 = 1 (A1)

Aa Computing the primal and dual eigen-functions Φ0 and Ψ0 :

Φ0 and Ψ0 are the solutions of the first equation in (3.5), where the operator isM0 on the plane
domainG . A change of variables is performed:

ξ(x1, x2) =

√
k22

k11k22 − k2
12

x1 −
√

k2
12

k22(k11k22 − k2
12)

x2 (A2)

η(x1, x2) =

√
1

k22
x2 (A3)

so thatM0 in the new variables is transformed into the Laplace operator:

∂2

∂ξ2
+

∂2

∂η2
, (A4)

over a plane domainG′ . The straight lines defined byθ = 0 and θ = ω in the original domain
G are transformed into the two lines defined byγ = 0 and γ = ω∗ in the transformed domain
G′ where:

ω∗ = arctan

(√
k11k22 − k2

12 sinω

k22 cosω − k12 sinω

)
(A5)

as illustrated in Figure 16. BothΦ0 and Ψ0 have to satisfy homogeneous Dirichlet boundary

x

h

w
*

G’

G�1

G�2

g

r

x1

x2

w

G

G1

G2

r

q

Figure 16. The plane domainG before and after change of variables.

conditions onθ = 0, ω in the original domain, which become in the transformed domain:

Φ0(ρ, 0) = Φ0(ρ, ω
∗) = Ψ0(ρ, 0) = Ψ0(ρ, ω

∗) = 0. (A6)
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The solutions to the Laplace equation (by separation of variables) are:
{

Φ0(ρ, γ) = ρα (A cos(αγ) +B sin(αγ))

Ψ0(ρ, γ) = c0ρ
−α (A cos(αγ) −B sin(αγ))

(A7)

where Φ is associated with the positive eigen-values andΨ is associated the negative eigen-
values. The value of the constantc0 is chosen so to satisfy an orthonormal condition as will be
discussed next. Equation (A6) results in (here we provide the equations forΦ0 , although same
ones are obtained forΨ0 ):

(
1 0

cos(αω∗) sin(αω∗)

)(
A
B

)
=

(
0
0

)
(A8)

For a non-trivial solution,α has to satisfy:

αi = ± iπ

ω∗
, i = 1, 2, . . . (A9)

There are an infinite number of distinctαi ’s, for which there is an associatedΦ(αi)
0 and Ψ

(αi)
0 ,

and distinctBi where:
Ai = 0

The generic constant is omitted, as it is added to the EFIF in the asymptotic expansion. To obtain
the solution in the original domainG , a reverse transformation of variables is performed and the
functions Φ

(αi)
0 and Ψ

(αi)
0 are obtained in the coordinatesr, θ :

Φ
(αi)
0 (r, θ) = rαiϕ

(αi)
0 (θ), Ψ

(αi)
0 (r, θ) = c

(αi)
0 r−αiψ

(αi)
0 (θ)

where

ϕ
(αi)
0 (θ) =

(
k22 cos2 θ−k12 sin(2θ)+k11 sin2 θ

k11k22−k2
12

)αi

2

sin

(
αi arctan

(√
k11k22−k2

12
sin θ

k22 cos θ−k12 sin θ

))

and

ψ
(αi)
0 (θ) =

(
k22 cos2 θ−k12 sin(2θ)+k11 sin2 θ

k11k22−k2
12

)−αi

2

sin

(
αi arctan

(√
k11k22−k2

12
sin θ

k22 cos θ−k12 sin θ

))

One may notice that for the Laplace operator,kij = δij , thenω∗ = ω and the eigen-functions
and their duals are the well known expressions:

{
Φ

(αi)
0 (r, θ) = rαiϕ

(αi)
0 (θ) = rαi sin(αiθ)

Ψ
(αi)
0 (r, θ) = c

(αi)
0 r−αiψ

(αi)
0 (θ) = c

(αi)
0 r−αi sin(αiθ)

, αi =
iπ

ω
.

Ab The value of the constantc(αi)
0 :

The value of the constantc(αi)
0 is chosen such that the primal and the dual eigen-function,Φ

(αi)
0

and Ψ
(αi)
0 , satisfy the orthonormal condition:

∫ ω

0
[T (R)Φ

(αi)
0 · Ψ(αi)

0 − Φ
(αi)
0 · T (R)Ψ

(αi)
0 ]Rdθ = 1 (A10)
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where T (R) is the radial Neumann trace operator related to the operatorM0 :

T (R) =
(
k11 cos2 θ + k12 sin 2θ + k22 sin2 θ

)
∂
∂r

+
(
k12 cos 2θ − 1

2 (k11 − k22) sin 2θ
)

1
r

∂
∂θ
.

Further details about (A10) are given in [8]. The value of theconstantc(αi)
0 , is extracted from

equation (A10):

c
(αi)
0 =

(∫ ω

0

[
T (R)

(
rαiφ

(αi)
0

)
·
(
r−αiψ

(αi)
0

)
−
(
rαiφ

(αi)
0

)
· T (R)

(
r−αiψ

(αi)
0

)]
Rdθ

)−1

.

One may notice that for the Laplace operatorkij = δij the Neumann trace operator simplifies

to T = ∂
∂r

and c
(αi)
0 = 1

αiω
, which is the known coefficient of the dual eigen-function for a

two dimensional domain. The explicit value of the constantc
(α1)
0 for Cases 1-4 is computed and

presented in Table 5.

Ac The odd shadow functions and the odd dual shadow functions:

Once the primal eigen-function,Φ(αi)
0 , is obtained, the first shadow functionΦ(αi)

1 may be calcu-
lated by the second equation in (3.5). BecauseM1 ≡ 0 , the differential equation is homogenous
with homogeneous Dirichlet boundary conditions and therefore the first shadow function vanishes:

Φ
(αi)
1 = 0 (A11)

The sequence of odd shadow functions,Φ
(αi)
k (where k = 3, 5, 7, . . . ), are calculated as the

solution of the third equation in (3.5). ForΦ(αi)
3 we obtain:

M0Φ
(αi)
3 = −M2Φ

(αi)
1 = 0 (A12)

Once again the differential equation becomes homogeneous with homogeneous Dirichlet boundary
conditions so thatΦ(αi)

3 = 0 . Same arguments hold for all odd shadow functions associated with
an operatorL having k13 = k23 = 0 , thus:

Φ
(αi)
k = 0 k = 3, 5, 7, . . . (A13)

Computation of the dual shadow functions,Ψ
(αi)
k , is along the same lines thus for anyL with

k13 = k23 = 0 :
Ψ

(αi)
k = 0 k = 3, 5, 7, . . . (A14)

Ad The shadow function Φ
(αi)
2 and its dual Ψ

(αi)
2 :

The shadow functionΦ(αi)
2 and its dual Ψ(αi)

2 are the solution of the third equation in (3.5)
with j = 0 . It is a non-homogeneous differential equation over a two dimensional domain with
homogeneous Dirichlet boundary conditions. Its explicit form in coordinatesρ, γ is:

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂γ2

)
Φ

(αi)
2 = −ραi sin(αiγ) (A15)

The homogeneous solution is:

Φ
(αi)H
2 = ρf

[
AH cos(fγ) +BH sin(fγ)

]
(A16)
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and the particular solution is:

Φ
(αi)P
2 =

−1

4(αi + 1)
ραi+2 sin(αiγ) (A17)

The particular solution identically satisfies the homogeneous Dirichlet boundary conditions so that
the homogeneous solution must satisfy these:

{
Φ

(αi)
2 (ρ, 0) = Φ

(αi)H
2 (ρ, 0) + Φ

(αi)P
2 (ρ, 0) = Φ

(αi)H
2 (ρ, 0) = 0

Φ
(αi)
2 (ρ, ω∗) = Φ

(αi)H
2 (ρ, ω∗) + Φ

(αi)P
2 (ρ, ω∗) = Φ

(αi)H
2 (ρ, ω∗) = 0

(A18)

The coefficientsAH , BH vanish so thatΦ2 is the particular solution alone. We may conclude
that Φ

(αi)
2 is given by:

Φ
(αi)
2 (r, θ) = rαi+2ϕ

(αi)
2 (θ) (A19)

where:

ϕ
(αi)
2 (θ) = − 1

4(αi+1)

(
k22 cos2 θ−k12 sin(2θ)+k11 sin2 θ

k11k22−k2
12

)αi+2

2

sin
{
αi arctan

(√
k11k22−k2

12
sin θ

k22 cos θ−k12 sin θ

)}
.

ComputingΨ
(αi)
2 follows same arguments and we obtain:

Ψ
(αi)
2 (r, θ) = c

(αi)
0 rαi+2ψ

(αi)
2 (θ) (A20)

where:

ψ
(αi)
2 (θ) = 1

4(αi−1)

(
k22 cos2 θ−k12 sin(2θ)+k11 sin2 θ

k11k22−k2
12

)−αi+2

2

sin
{
αi arctan

(√
k11k22−k2

12
sin θ

k22 cos θ−k12 sin θ

)}
.

Ae The shadow function Φ
(αi)
4 :

The shadow functionΦ(αi)
4 is generated by the third differential equation in (3.5) with j = 2 .

The method of extractingΦ(αi)
4 is very similar to the method ofΦ(αi)

2 extraction. The explicit
form of the differential equation inρ, γ coordinates is:

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂γ2

)
Φ

(αi)
4 =

−1

4(αi + 1)
ραi+2 sin(αiγ). (A21)

The solution ofΦ(αi)
4 is based on the particular solution alone since the homogeneous solution

vanishes under the homogeneous Dirichlet boundary conditions. The shadow functionΦ(αi)
4 in

r, θ polar coordinates is:
Φ

(αi)
4 (r, θ) = rαi+4ϕ

(αi)
4 (θ) (A22)

where:

ϕ
(αi)
4 (θ) = 1

32(αi+1)(αi+2)

(
k22 cos2 θ−k12 sin(2θ)+k11 sin2 θ

k11k22−k2
12

)αi+4

2

sin
{
αi arctan

(√
k11k22−k2

12
sin θ

k22 cos θ−k12 sin θ

)}
.
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Case # ω∗ α1 c
(α1)
0

Case 1 1.5π 2/3 0.31831
Case 2 1.1476π 0.87139 0.26903
Case 3 2.0π 0.5 0.31831
Case 4 2.0π 0.5 0.23533

Table 5. Main coefficients of the considered cases

Af The specific cases (1-4) eigen-functions:

The eigen-functions and the dual eigen-functions are defined by the eigen-value,αi , the repre-
sentative coefficient of the domain,ω∗ (equation (A5), and the representative coefficient of the
dual solution,c(αi)

0 . The coefficients of the selected cases, related with the first eigen-value are
presented in Table 5.

We provide in Figures 17-20 the graphical representation ofthe primal and dual eigen-functions
ϕ

(α1)
0 , ϕ

(α1)
2 , ϕ

(α1)
4 , ψ

(α1)
0 , ψ

(α1)
2 for Cases 1-4.
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Figure 17. The eigen-functions and dual eigen-functions associated with α1 , for Case 1.
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Figure 18. The eigen-functions and dual eigen-functions associated with α1 , for Case 2.

0 90 180 270
−0.2

0   

0.2 

0.4 

0.6 

0.8 

Degrees

E
ig

en
 −

 F
un

ct
io

ns

primal eigen function, 0
primal shadow  function, 2
primal shadow  function, 4

0 90 180 270 360
−0.2

−0.1

0

0.1

0.2

0.3

0.4

Degrees

E
ig

en
 −

 F
un

ct
io

ns
Dual eigen function, 0
Dual shadow  function, 2

Figure 19. The eigen-functions and dual eigen-functions associated with α1 , for Case 3.
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Figure 20. The eigen-functions and dual eigen-functions associated with α1 , for Case 4.
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Appendix B
The Primal and Dual Eigen-functions and Their Shadows for Cases 5.

The operatorL for Case 5, is:

L = ∂1∂1 + ∂2∂2 − ∂1∂3 + ∂3∂3

with:
M0 = ∂1∂1 + ∂2∂2 M1 = −∂1 M2 = 1

For this caseΦ(αi)
0 and Ψ

(αi)
0 according to the first equation of system (3.5) are:

Φ
(αi)
0 (r, θ) = rαi sin(αiθ) (B1)

Ψ
(αi)
0 (r, θ) = c

(αi)
0 r−αi sin(αiθ) (B2)

with αi = iπ
ω

, i = 1, 2, . . . . The Neumann trace operator for Case 5 is simplyT = ∂
∂r

and

therefore the coefficient of the dual solution isc(αi)
0 = 1

αiω
.

The shadow functionΦ(αi)
1 is computed by the second differential equation of the system

(3.5) and the shadow functionsΦ(αi)
2 and Φ

(αi)
3 are computed by the third differential equation

of (3.5) with j = 0 and j = 1 respectively.

Φ
(αi)
1 (r, θ) = 1

4 r
αi+1

(
sin(αi − 1)θ + sin(αi + 1)θ

)

Φ
(αi)
2 (r, θ) = 1

32 r
αi+2

(
sin(αi − 2)θ + sin(αi + 2)θ + 2(αi−2)

αi+1 sinαiθ
)

Φ
(αi)
3 (r, θ) = 1

384 r
αi+3

(
sin(αi − 3)θ + sin(αi + 3)θ

+ 3(αi−5)
αi+1

{
sin(αi + 1)θ + sin(αi − 1)θ

})
.

The dual shadow functionΨ(αi)
1 is computed by the second equation of the system (3.5) with

Dirichlet boundary conditions. The shadow functionsΨ
(αi)
2 and Ψ

(αi)
3 are computed by the

third differential equation of the system (3.5) withj = 0 and j = 1 respectively.

Ψ
(αi)
1 (r, θ) = 1

4 c
(αi)
0 r−αi+1

(
sin(αi − 1)θ + sin(αi + 1)θ

)

Ψ
(αi)
2 (r, θ) = 1

32 c
(αi)
0 r−αi+2

(
sin(αi − 2)θ + sin(αi + 2)θ + 2(αi+2)

αi−1 sinαiθ
)

Ψ
(αi)
3 (r, θ) = 1

384 c
(αi)
0 r−αi+3

(
sin(αi − 3)θ + sin(αi + 3)θ

+ 3(αi+5)
αi−1

{
sin(αi + 1)θ + sin(αi − 1)θ

})
.

Figures 21 present the eigen-functions, their shadows and their duals associated with the first
eigen-value for Case 5.

33



0  90 180 270 360
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Degrees

E
ig

en
 −

 F
un

ct
io

ns

primal eigen function, 0
primal shadow function, 1
primal shadow function, 2
primal shadow function, 3

0 90 180 270 360
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Degrees

E
ig

en
 −

 F
un

ct
io

ns

dual eigen function, 0 
dual shadow function, 1
dual shadow function, 2
dual shadow function, 3

Figure 21. The eigen-functions and dual eigen-functions associated with the first eigen-value,
α1 , for Case 5.

Appendix C
Numerical Errors due to Numerical Integration and Finite El ement

Approximation.

The integralJ [R] is computed by a Gaussian quadrature, and using the approximated finite
element solution instead of the exact solution. These incorporate numerical inaccuracies in our
computations which should be controlled and bounded. We useCase 5 in this Section to quantify
the level of numerical errors, and demonstrate that these are negligible.

Ca Errors due to Finite Element Approximation

By using a finite element solution as an approximation of the exact solution, a numerical error is
included in our computations. In order to evaluate the influence of the error, we computeJ [R]
at different polynomial degrees of the test and trial functions of the finite elements. The results
summarized in Table 6 are the values ofJ [R]/Jex for Case 5 with(BC2) (cf §4.b), using the

quasi-dual functionsK(α1)
0 to K

(α1)
3 with “proper” B(x3) . The values ofJ [R]/Jex are not

influenced by the polynomial degree of the finite element approximation when using high degree
of polynomial (p = 5 or higher).

B(x3) 1 (x3 − 1) (x3 − 1)2 (x3 − 1)3

Jex 8/3 −8/5 128/105 −64/63

p = 8 0.996084 0.999703 1.000080 1.000068
p = 7 0.995804 0.999439 0.999819 0.999805
p = 6 0.995966 0.999646 1.000032 1.000016
p = 5 0.997801 1.001348 1.001692 1.001663
p = 4 0.994830 0.998490 0.998890 0.998882
p = 3 0.989424 0.995263 0.996286 0.996391

Table 6. Values ofJ [R]/Jex , for Case 5 with(BC2) at R = 0.02 using differentp -FEM.
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Cb Errors due to Gaussian Quadrature

The second source of numerical error is due to the Gauss quadrature used to evaluate the integral
J [R] . One needs to evaluate a double integral overθ and x3 . The Gauss quadrature ordernG

controls the numerical error in this case. In order to evaluate the influence of the quadrature order,
J [R] was computed with various quadrature orders. The results presented in Table 7 are the values

of J [R]/Jex for Case 5 with(BC2) again, using the quasi-dual functionsK(α1)
0 to K

(α1)
3 . The

values ofJ [R]/Jex are not influenced by the quadrature computation even at low order as 10.

B(x3) 1 (x3 − 1) (x3 − 1)2 (x3 − 1)3

Jex 8/3 −8/5 128/105 −64/63

nG = 10 0.996092 0.999705 1.000079 1.000064
nG = 15 0.996084 0.999703 1.000080 1.000068
nG = 32 0.996085 0.999701 1.000077 1.000064

Table 7. Values ofJ [R]/Jex , for Case 5 with(BC2) at R = 0.02 using differentnG .

References

[1] M. Abramowitz and A. Stegun.Handbook of mathematical functions with formulas, graphs
and mathematical tables. Nat. Bureau of Standards, Applied Mathematics Series, 1964.
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