Approximation of the inf-sup constant {Martin.Costabel, Monique.Dauge}@univ-rennes1.fr

The Problem

The **inf-sup constant of the divergence** or **L**adyzhenskaya-**Babuška**-**B**rezzi constant:

2. the function spaces $X = H_0^1$ $\frac{1}{9}(\Omega)^d$ (velocities) and $M=L^{\tilde{2}}_{\circ}$ $\frac{2}{\circ}(\Omega)$ (pressures)

 Ω is a bounded domain in \mathbb{R}^d .

Choose subspaces $X_N \subset X$ and $M_N \subset M$ and define the **discrete LBB constant** as

Question: Does β(Ω) converge when

 $\beta_N = \inf$ *q*∈*M^N* sup v∈*XN* Z <u>Ω</u> div v *q* $|{\bf v}|$ 1 $\|q\|$ 0

Theorem 1. If $(M_N)_N$ is asymptotically dense in M , then

1. the domain Ω or

(USC) $\left|\limsup \beta_N \leq \beta(\Omega)\right|$ *N*→∞

Domain upper semi-continuity

are approximated?

Generally: Upper semi-continuity

via extension by zero. If $meas(\Omega \setminus \Omega_N) \to 0$, then (USC) holds in the sense that

> $\limsup \, \beta(\Omega_N) \leq \beta(\Omega)$. *N*→∞

Theorem 1 can be applied to inner approximations of the domain Ω:

Corollary.

Let $\Omega_N \subset \Omega$ and define the subspaces

 $X_N = H_0^1$ $\int_0^1 (\Omega_N)^d$ and $M_N=L_\circ^2$ $\frac{2}{\circ}(\Omega_N)$ Regular polygons, $0 \leq \beta(\Omega) - \beta(\Omega_N) \leq \frac{\pi}{2N}$ 2*N* : Convergence

Upper semi-continuity in FEM

For approximations of the function spaces, for example via Finite Element Methods, a consequence of Theorem 1 is that

"Discrete is never better than Continuous"

Let $\mathscr{S} = \text{\rm div}\, \Delta_{\text{\rm Dir}}^{-1}$ $_{\mathrm{Dir}}^{-1}\nabla$ be the Schur complement operator of the Stokes system (Cosserat operator).

Then it is known that

Suppose that a uniform discrete LBB condition has been shown:

Then

References

Domain Convergence

Theorem 2. Let Ω_N converge to Ω in Lipschitz norm, that is: $\mathfrak{F}_N:\Omega_N\to\Omega$ is a bi-Lipschitz homeomorphism such that $\|\nabla (\mathfrak{F}_{N}-\mathrm{Id})\|_{L^{\infty}}\to 0.$

Then *N*→∞ $\boldsymbol{\beta}\left(\boldsymbol{\Omega_N}\right) = \boldsymbol{\beta}\left(\boldsymbol{\Omega}\right)$

Polygonal approximation

Corollary. Let $\Omega \subset \mathbb{R}^2$ be piecewise \mathscr{C}^2 , and let Ω*h* be polygonal approximations of side length $\leq h$ and such that corners(Ω) \subset corners(Ω_h).

Then | \vert $\beta(\Omega)-\beta(\Omega_h)\big|$ \vert $\leq c(\Omega)h.$

Examples: Domain approximation

 $\boldsymbol{\beta}\left(\boldsymbol{\Omega_N}\right) \le \boldsymbol{\beta}(\textbf{corner}) <$ $\sqrt{1}$ $\frac{1}{2} = \beta(\Omega)$ (disc) \implies **No convergence**

 Ω Cusps $0 < y < x^{1+1/N}$: $\beta(\Omega_N) = 0$, tend to triangle $\beta(\Omega) > 0$ \implies **No convergence**

> Computation of β^2 (lowest Cosserat eigenvalue) on rectangles with Q₁₅-Q₁₂ Stokes solver, refined mesh, ~ 30000 dof. Various theoretical bounds are shown. Red line is upper bound from continuous spectrum. Approximation for Square is very bad!

> Computation of first 4 Cosserat eigenvalues on rectangles. Left : $p_X = 8$, $p_M = 4$ Right: $p_X = 8$, $p_M = 7$

FEM Convergence

Theorem 3. For the h **version FEM** on regular meshes, if

```
h_X/h_M \to 0, then \beta_N \to \beta(\Omega).
```
For the p **version FEM**, if

 p_X/p_M^2 $\frac{2}{M} \rightarrow \infty$, then $\beta_N \rightarrow \beta(\Omega)$.

FEM Non-Convergence

Proposition. Let $\beta(\Omega) > 0$. There exists $\beta_0 > 0$ such that for any $\beta_\infty\in(0,\beta_0]$ one can find a finite element method satisfying $\lim_{N\to\infty}\beta_N=\beta_\infty$.

Cosserat spectrum and corners in dimension 2: An Upper Bound

 $\forall N: \quad \beta_N \geq \beta_* > 0$.

$$
(\Omega)^2 = \min Sp(\mathscr{S}).
$$

has corner singularities whose exponent has vanishing real part,

 $\sqrt{ }$ 1 2 − $|\sin \omega|$ 2ω , 1 2 $+$ $|\sin \omega|$ 2ω $\overline{}$ \subset Sp(\mathscr{S}), hence

If Ω has corners, then $\mathscr S$ has a continuous spectrum, which can be determined by Kondrat'ev's method of Mellin transformation. If the problem then σ is in the continuous spectrum. For a corner of opening ω , this contributes an interval:

 $(\sigma \Delta - \nabla \text{div})\mathbf{u} = \mathbf{f}, \quad \mathbf{u} \in H_0^1$ $\frac{1}{0}(\mathbf{\Omega})^d$

Examples: FEM approximation

Scott-Vogelius \mathbb{P}_4 - \mathbb{P}_3^{dc} 3 elements on near-singular meshes $\Longrightarrow \lim \beta_N = \beta_{\infty}$ arbitrary

First Cosserat eigenfunction (pressure) on rectangles: Corner singularity depends on eigenvalue.

[1] C. Bernardi, M. Costabel, M. Dauge, V. Girault : *Continuity properties of the inf-sup constant for the divergence*, arXiv : 1510.03978, to appear in SIAM J. Math. Anal.

[2] M. Costabel, M. Crouzeix, M. Dauge, Y. Lafranche : *The inf-sup constant for the divergence on corner domains* Numer. Methods Partial Differential Equations **31**(2) (2015), 439–458.