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Abstract. The interface problem describing the scattering of time-harmonic electromagnetic
waves by a dielectric body is often formulated as a pair of coupled boundary integral equations
for the electric and magnetic current densities on the interface Γ. In this paper, following an idea
developed by Kleinman and Martin [19] for acoustic scattering problems, we consider methods for
solving the dielectric scattering problem using a single integral equation over Γ for a single unknown
density. One knows that such boundary integral formulations of the Maxwell equations are not
uniquely solvable when the exterior wave number is an eigenvalue of an associated interior Maxwell
boundary value problem. We obtain four different families of integral equations for which we can
show that by choosing some parameters in an appropriate way, they become uniquely solvable for all
real frequencies. We analyze the well-posedness of the integral equations in the space of finite energy
on smooth and non-smooth boundaries.
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1. Introduction. We consider the scattering of time-harmonic electromagnetic
waves in R3 by a bounded Lipschitz obstacle. We assume that the dielectric permit-
tivity and the magnetic permeability take constant, in general different, values in the
interior and in the exterior of the domain. This problem is described by the system
of Maxwell’s equations, valid in the sense of distributions in R3, which implies two
transmission conditions expressing the continuity of the tangential components of the
fields across the interface. The transmission problem is completed by the Silver-Müller
radiation condition at infinity (see [26] and [28]).

It is well known that this problem can be reduced in several different ways to
systems of two boundary integral equations for two unknown tangential vector fields on
the interface. Such formulations are analyzed in Harrington’s book [16] and in Martin
and Ola’s comprehensive paper [22]. Some pairs of boundary integral equations, such
as Müller’s [27], are uniquely solvable for all real values of the exterior wave number
and others, such as the so-called electric-field formulations [22] are not, although
the underlying Maxwell interface problem is always uniquely solvable under standard
assumptions on the material coefficients.

More recent research works in the scientific and engineering community show that
there are computational advantages to solve dielectric scattering problems via a single
integral equation for a single unknown, rather than a system of two equations of two
unknowns. For two-dimensional dielectric scattering problems, one can find various
formulations and numerical results in [29, 30, 32]. In [23] Marx develops single source
integral formulations for three-dimensional homogeneous dielectric objects using an
ansatz on the exterior electric field and in [34] Yeung presents electric-field (EFIE)
and magnetic-field (MFIE) integral equations for a single unknown based on an ansatz
on the interior scattered field. Computational results in [34] show higher convergence
speed for the MFIE and the EFIE than for the pairs of boundary integral equations.
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However, both of these single integral formulations suffer from spurious non-unique
solvability due to interior resonances.

In this paper, we study methods for solving the transmission problem using a
single boundary integral equation for a single unknown tangential vector field on the
interface by eliminating irregular frequencies. We follow ideas of [19] where Kleinman
and Martin considered the analogous question for the acoustic interface scattering
problem. The method consists of representing the solution in one domain by some
combination of a single layer potential and a double layer potential, and inserting this
representation into the transmission conditions and the Calderón relations of the other
domain. Several different integral equations of the first kind or of the second kind,
containing two arbitrary parameters, can be obtained in this way, and in the scalar
case, the parameters can be chosen in such a way that no spurious real frequencies are
introduced. Following the same procedure in the electromagnetic case, one encounters
two main difficulties:

The first problem is that some boundary integral operators that are compact in
the scalar case are no longer compact, and therefore arguments based on the theory
of Fredholm integral equations of the second kind have to be refined in order to show
well-posedness of the corresponding integral equations.

The second problem comes from a lack of ellipticity. The spurious frequencies
are associated with the spectrum of a certain interior boundary value problem of the
third kind, and whereas in the scalar case this is an elliptic boundary value problem
whose spectrum can be moved off the real line by the right choice of parameters,
in the Maxwell case this boundary value problem is not elliptic, in general. Thus
an additional idea is needed to avoid real irregular frequencies. Mautz presents in
[24] an alternative that leads to an associated interior problem with an impedance
boundary condition, which ensures the uniqueness of the solution. However Mautz’s
equation is not adapted to our point of view of variational methods and energy spaces.
Since the Kleinman-Martin method has similarities to the combined field integral
equation method, we use a regularizer introduced by Steinbach and Windisch in [31]
in the context of combined field integral equations for the time-harmonic Maxwell
equations. This regularizer is a positive definite boundary integral operator with a
similar structure as the operator of the electrical field integral equation, but it is
not a compact operator like those used in [10] and [6] for regularizing the exterior
electromagnetic scattering problem. Its introduction changes the boundary condition
in the associated interior boundary value problem from a non-elliptic local impedance-
like condition to a non-local, but elliptic, boundary condition.

This work contains results from the thesis [21] where this integral formulation of
the transmission problem is used to study the shape derivatives of the solution of the
dielectric scattering problem, in the context of a problem of optimizing the shape of
a dielectric lens in order to obtain a prescribed radiation pattern.

In Section 3 we recall some results about traces and potentials for Maxwell’s
equations in Sobolev spaces. We use the notation of [7] and [6] and quote some
important properties of the boundary integral operators that constitute the Calderón
projector for Maxwell’s equations.

Sections 4 and 5 contain the details of the method for solving the transmission
problem using single-source boundary integral equations. In Section 4, we start from
a layer representation for the exterior field whereas in Section 5, we use a layer rep-
resentation for the interior field. In either case, we derive two boundary integral
equations of the second kind and we show uniqueness of their solutions under suitable
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conditions on an associated interior boundary value problem. Moreover, we show
that the integral operators in each integral equation are Fredholm of index zero. We
also construct the solution of the transmission problem using the solution of any of
the four integral equations. We finally show how to choose the free parameters so
that the associated interior boundary value problem is uniquely solvable, and as a
consequence, we can construct an integral representation of the solution which yields
uniquely solvable boundary integral equations for all real frequencies.

For smooth domains, we base the analysis of the integral operators on the tech-
nique of Helmholtz decomposition, which represents a tangential vector field by two
scalar field and each integral operator acting on tangential fields by a two-by-two
matrix of scalar operators. Since these operators then act between standard Sobolev
spaces instead of the complicated mixed-order energy space, it is easy to check for
compactness or ellipticity. Using this technique, we find rather general sufficient condi-
tions on the physical parameters to ensure unique solvability of the integral equations.
If the boundary is only Lipschitz, we show that under more restrictive conditions one
still has strong ellipticity of the integral operators. This conditions include the phys-
ically relevant case of positive permeabilities, permittivities, and frequencies.

2. The dielectric scattering problem. Let Ω denote a bounded domain in
R3 and let Ωc denote the exterior domain R3\Ω. In this paper, we will assume that
the boundary Γ of Ω is a Lipschitz continuous and simply connected closed surface.
Let n denote the outer unit normal vector on the boundary Γ.

In Ω (resp. Ωc) the electric permittivity εi (resp. εe) and the magnetic perme-
ability µi (resp. µe) are positive constants. The frequency ω is the same in Ω and
in Ωc. The interior wave number κi and the exterior wave number κe are complex
constants of non negative imaginary part.

Notation: For a domain G ⊂ R3 we denote by Hs(G) the usual L2-based
Sobolev space of order s ∈ R, and by Hs

loc(G) the space of functions whose restrictions
to any bounded subdomain B of G belong to Hs(B), with the convention H0 ≡ L2.
Spaces of vector functions will be denoted by boldface letters, thus

Hs(G) = (Hs(G))3 .

If D is a differential operator, we write:

H(D,Ω) = {u ∈ L2(Ω) : Du ∈ L2(Ω)}
Hloc(D,Ωc) = {u ∈ L2

loc(Ωc) : Du ∈ L2
loc(Ωc)}

The space H(D,Ω) is endowed with the natural graph norm. This defines in particular
the Hilbert spaces H(curl,Ω) and H(curl curl,Ω).

The time-harmonic dielectric scattering problem is formulated as follows.

The dielectric scattering problem :
Given an incident field Einc ∈ Hloc(curl,R3) that satisfies curl curlEinc−κ2

eE
inc = 0

in a neighborhood of Ω, we seek two fields Ei ∈ H(curl,Ω) and Es ∈ Hloc(curl,Ωc)
satisfying the time-harmonic Maxwell equations

curl curlEi − κ2
iE

i = 0 in Ω, (2.1)
curl curlEs − κ2

eE
s = 0 in Ωc, (2.2)
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the two transmission conditions,

n× Ei = n× (Es + Einc) on Γ (2.3)
µ−1
i (n× curlEi) = µ−1

e n× curl(Es + Einc) on Γ (2.4)

and the Silver-Müller radiation condition:

lim
|x|→+∞

|x|
∣∣∣∣curlEs(x)× x

|x|
− iκeEs(x)

∣∣∣∣ = 0. (2.5)

It is well known that this problem has at most one solution under some mild
restrictions on the dielectric constants. We give sufficient conditions in the next
theorem, and for completeness we give its simple proof.
Theorem 2.1 Assume that the constants µi, κi, µe and κe satisfy:

(i) κe is real and positive or Im(κe) > 0,

(ii) Im

(
κe
µe
µi

)
≤ 0 and Im

(
κe
µe
µi
κ2
i

)
≥ 0.

Then the dielectric scattering problem has at most one solution.
Proof. We use similar arguments as in the acoustic case [19]. Assume that Einc =

0. Let (Ei,Es) be a solution of the homogeneous scattering problem. Let BR be a
ball of radius R large enough such that Ω ⊂ BR and let nR the unit outer normal
vector to BR. Integration by parts using the Maxwell equations (2.1) and (2.2) and
the transmission conditions (2.3) and (2.4) gives :∫
∂BR

(curlEs × nR) · Es =

∫
BR\Ω

{| curlEs|2 − κ2
e|E

s|2}+
µe
µi

∫
Ω

{| curlEi|2 − κ2
i |E

i|2}

We multiply this by κe and take the imaginary part:

Im

(
κe

∫
∂BR

(curlEs × nR) · Es
)

= Im(κe)

(∫
BR\Ω

{| curlEs|2 + |κeEs|2}

)

+ Im

(
κe
µe
µi

)∫
Ω

| curlEi|2 − Im

(
κe
µe
µi
κ2
i

)∫
Ω

|Ei|2.

Under the hypotheses (i) and (ii), all terms on the right hand side are non-positive.
Thanks to the Silver-Müller condition, we have

lim
R→+∞

∫
∂BR

| curlEs × nR − iκeEs|2 = 0.

Developing this expression, we get

lim
R→+∞

∫
∂BR

| curlEs × nR|2 + |κeEs|2 − 2 Re
(
curlEs × nR · iκeEs

)
= 0.

As we have seen, we have∫
∂BR

Re
(
curlEs × nR · iκeE

)
= Im

∫
∂BR

(
κe curlE

s × nR · E
)
≤ 0.

It follows that

lim
R→+∞

∫
∂BR

|Es|2 = 0.

Thus, by Rellich’s lemma [10], Es = 0 in Ωc. Using the transmission conditions, we
obtain γDEi = γNκiE

i = 0. It follows that Ei = 0 in Ω.
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3. Traces and electromagnetic potentials. We use some well known results
about traces of vector fields and integral representations of time-harmonic electro-
magnetic fields on a bounded domain Ω. Details can be found in [3, 4, 5, 7, 11, 28].
Recall that the boundary Γ is only assumed to be Lipschitz continuous, unless stated
otherwise.
Definition 3.1 For a vector function u ∈ (C∞(Ω))3 and a scalar function v ∈
C∞(Ω) we define the traces :

γv = v|Γ
γDu = (n× u)|Γ (Dirichlet)

γNκu = κ−1(n× curlu)|Γ (Neumann).

We use standard Sobolev spaces Ht(Γ), t ∈ [−1, 1], endowed with standard norms
|| · ||Ht(Γ) and with the convention H0(Γ) = L2(Γ). Spaces of vector densities are
denoted by boldface letters, thus Ht(Γ) =

(
Ht(Γ)

)3. We define spaces of tangential
vector fields as Ht

×(Γ) = n×Ht(Γ). Note that on non-smooth boundaries, the latter
space different, in general, from the other space of tangential vector fields Ht

‖(Γ) =

n × Ht
×(Γ). On smooth boundaries, the two spaces coincide. For s = 0 we set

H0
×(Γ) = L2

×(Γ).
The trace maps

γ : Hs+ 1
2 (Ω)→ Hs(Γ),

γD : Hs+ 1
2 (Ω)→ Hs

×(Γ)

are continuous for all s > 0, if the domain is smooth. On a polyhedron, the trace
maps are continuous for s ∈ (0, 2), whereas for a general bounded Lipschitz domain in
general, the validity is only given for s ∈ (0, 1). For s = 1, the trace operator γ fails,
in general, to map H

3
2 (Ω) to H1(Γ), although H1(Γ) is well defined on the boundary

Γ, see [18].
The dual spaces of Ht(Γ) and Ht

×(Γ) with respect to the L2 (or L2) scalar product
is denoted by H−t(Γ) and H−t× (Γ), respectively.

We use the surface differential operators: The tangential gradient denoted by ∇Γ,
the surface divergence denoted by divΓ, the tangential vector curl denoted by curlΓ
and the surface scalar curl denoted by curlΓ. For their definitions we refer to [5], [11]
and [28].
Definition 3.2 We define the Hilbert space

H
− 1

2
× (divΓ,Γ) =

{
j ∈ H

− 1
2
× (Γ),divΓ j ∈ H− 1

2 (Γ)
}

endowed with the norm

|| · ||
H

− 1
2

× (divΓ,Γ)
= || · ||

H
− 1

2
× (Γ)

+ ||divΓ ·||
H− 1

2 (Γ)
.

The skew-symmetric bilinear form

B : H
− 1

2
× (divΓ,Γ)×H

− 1
2
× (divΓ,Γ) → C

( j,m) → B( j, m) =

∫
Γ

j ·(m× n) dσ
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defines a non-degenerate duality product on H
− 1

2
× (divΓ,Γ).

Lemma 3.3 The operators γD and γN are linear and continuous from (C∞(Ω))3 to
L2
×(Γ) and they can be extended to continuous linear operators from H(curl,Ω) and

H(curl,Ω) ∩H(curl curl,Ω), respectively, to H
− 1

2
× (divΓ,Γ). Moreover, for all u, v ∈

H(curl,Ω), we have:∫
Ω

[(curlu · v)− (u · curl v)] dx = B(γDv, γDu). (3.1)

For u ∈ Hloc(curl,Ωc) and v ∈ Hloc(curl curl,Ωc)) we define γcDu and γcNv in
the same way and the same mapping properties hold true.

Let κ be a complex number such that Im(κ) ≥ 0 and let

G(κ, |x− y|) =
eiκ|x−y|

4π|x− y|

be the fundamental solution of the Helmholtz equation

∆u+ κ2u = 0.

The single layer potential ψκ is given by :

(ψκu)(x) =

∫
Γ

G(κ, |x− y|)u(y)dσ(y) x ∈ R3\Γ,
and its trace by

Vκu(x) =

∫
Γ

G(κ, |x− y|)u(y)dσ(y) x ∈ Γ.

For a proof of the following well-known result, see [17, 28].
Lemma 3.4 The operators

ψκ : H−
1
2 (Γ)→ H1

loc(R3)

Vκ : H−
1
2 (Γ)→ H

1
2 (Γ)

are continuous.
We define the electric potential ΨEκ generated by j ∈ H

− 1
2
× (divΓ,Γ) by

ΨEκ j := κψκ j+κ
−1∇ψκ divΓ j

This can be written as ΨEκ j := κ−1 curl curlψκ j because of the Helmholtz equation
and the identity curl curl = −∆ +∇ div (cf. [3]).

We define the magnetic potential ΨMκ generated by m ∈ H
− 1

2
× (divΓ,Γ) by

ΨMκ
m := curlψκm.

These potentials satisfy

κ−1 curlΨEκ = ΨMκ
and κ−1 curlΨMκ

= ΨEκ .

We denote the identity operator by I.
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Lemma 3.5 The potential operators ΨEκ and ΨMκ
are continuous from H

− 1
2
× (divΓ,Γ)

to Hloc(curl,R3). For j ∈ H
− 1

2
× (divΓ,Γ) we have

(curl curl−κ2I)ΨEκ j = 0 and (curl curl−κ2I)ΨMκ
m = 0 in R3\Γ

and ΨEκ j and ΨMκ
m satisfy the Silver-Müller condition.

It follows that the traces γD, γNκ , γcD and γcNκ can be applied to ΨEκ and ΨMκ
,

resulting in continuous mappings from H
− 1

2
× (divΓ,Γ) to itself satisfying

γNκΨEκ = γDΨMκ
and γNκΨMκ

= γDΨEκ .

Defining

[γD] = γD − γcD, {γD} = −1

2
(γD + γcD) ,

[γNκ ] = γNκ − γcNκ , {γNκ} = −1

2

(
γNκ + γcNκ

)
.

we have the following jump relations (see [7]):

[γD] ΨEκ = 0, [γNκ ] ΨEκ = −I,

[γD] ΨMκ
= −I, [γNκ ] ΨMκ

= 0.

Now assume that E ∈ L2
loc(R3) belongs to H(curl,Ω) in the interior domain and

to Hloc(curl,Ωc) in the exterior domain and satisfies the equation

(curl curl−κ2I)E = 0 (3.2)

in R3 \ Γ and the Silver-Müller condition. Then if we set j = [γNκ ]E, m = [γD]E, we
have on R3 \ Γ the Stratton-Chu integral representation

E = −ΨEκ j−ΨMκ
m. (3.3)

Special cases of (3.3) are: If (Ei,Es) solves the dielectric scattering problem, then

−ΨEκe
γcNκeE

s −ΨMκe
γcDE

s =

{
−Es x ∈ Ωc

0 x ∈ Ω
(3.4)

ΨEκe
γcNκe

(
Es + Einc

)
+ ΨMκe

γcD
(
Es + Einc

)
=

{
Es x ∈ Ωc

−Einc x ∈ Ω
(3.5)

−ΨEκi
γNκiE

i −ΨMκi
γDE

i =

{
0 x ∈ Ωc

Ei x ∈ Ω
(3.6)

We can now define the main boundary integral operators:
Cκ = {γD}ΨEκ = {γNκ}ΨMκ

,
Mκ = {γD}ΨMκ = {γNκ}ΨEκ .

These are bounded operators in H
− 1

2
× (divΓ,Γ).

As tools, we will need variants of these operators:
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Definition 3.6 Define the operators M0, Cκ,0 and C∗0 for j ∈ H
− 1

2
× (divΓ,Γ) by :

M0 j = −{γD} curlΨ0,

Cκ,0 j = −κ n× V0 j+κ−1 curlΓ V0 divΓ j,

C∗0 j = n× V0 j+ curlΓ V0 divΓ j .

Note that C∗0 differs from C1,0 by the relative sign of the two terms.
We collect now some properties of these boundary integral operators that are

known for Lipschitz domains.
First we note the following useful relations:

curlΓ∇Γ = 0 and divΓ curlΓ = 0 (3.7)

divΓ(n× j) = − curlΓ j and curlΓ(n× j) = divΓ j (3.8)

The following lemma is proved in [4, 7].

Lemma 3.7 (i) The operators Cκ−Cκ,0 and Mκ−M0 are compact in H
− 1

2
× (divΓ,Γ).

(ii) Both Cκ and Mκ are antisymmetric with respect to the bilinear form B.
The Calderón projectors for the time-harmonic Maxwell system (3.2) are P = 1

2 I+Aκ
and P c = 1

2 I−Aκ where

A =

(
Mκ Cκ
Cκ Mκ

)
.

We have P ◦ P c = 0 and therefore

C2
κ = 1

4 I−M2
κ and CκMκ = −MκCκ. (3.9)

It is a classical result that when the boundary Γ is smooth, the operatorMκ is compact
from H

− 1
2
× (divΓ,Γ) to itself (see [28]). From identity (3.9) one can then immediately

deduce that the “electric” operator Cκ is Fredholm of index zero. The latter result is
also true for a Lipschitz boundary Γ (see [7] for more details). Later on, we need the
corresponding result for the “magnetic” operator 1

2 I +Mκ. This has been proved for
Lipschitz domains in [25, Thm. 4.8] and in [31, Thm. 3.2]:

Lemma 3.8 The operator 1
2 I + Mκ : H

− 1
2
× (divΓ,Γ) → H

− 1
2
× (divΓ,Γ) is Fredholm of

index zero.
In fact, for Imκ > 0 this operator is an isomorphism. Later on, we use the result for
κ = 0, where we don’t know whether it is an isomorphism. But we only need that is
an isomorphism up to a compact perturbation, that is, Fredholm of index zero, so we
will not pursue this further.

The following theorem was proved in [31, Thm. 2.6].
Lemma 3.9 The operator C∗0 is self-adjoint and elliptic for the bilinear form B and
invertible on H

− 1
2
× (divΓ,Γ). Ellipticity means here that there exists a positive constant

α such that for all j ∈ H
− 1

2
× (divΓ,Γ)

B
(
C∗0 j, j

)
≥ α|| j ||2

H
− 1

2
× (divΓ,Γ)

.
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Indeed, for j ∈ H
− 1

2
× (divΓ,Γ) we have

B(j, C∗0 j) =

∫
Γ

{
j ·V0 j + divΓ j V0 divΓ j

}
(3.10)

and the result follows from the H−
1
2 (Γ)-ellipticity of the scalar single layer potential

operator V0.

4. Integral equations 1. In this section, we present the first method for solving
the dielectric problem, following the procedure of R. E. Kleinman and P. A. Martin
[19]: We use a layer ansatz on the exterior field to construct two alternative boundary
integral equations.
In the scalar case, one represents the exterior field as a linear combination of a single
layer potential and a double layer potential, both generated by the same density. It
turns out that this simple idea does not suffice in the electromagnetic case if one
wants to avoid irregular frequencies. Our approach is related to the idea of “modified
combined field integral equations”: We compose one of the electromagnetic potential
operators with an elliptic and invertible boundary integral operator, namely C∗0 . More
precisely, we assume that Es admits the following integral representation :

Es(x) = −a(ΨEκe
j)(x)− b(ΨMκe

C∗0 j)(x) for x ∈ Ωc . (4.1)

Here j ∈ H
− 1

2
× (divΓ,Γ) is the unknown density and a and b are arbitrary complex

constants.
We set ρ =

µeκi
µiκe

. The transmission conditions can be rewritten :

γDE
i = γcDE

s + γDE
inc and γNκiE

i = ρ−1
(
γcNκeE

s + γNκeE
inc
)
.

Using this in the integral representation formula (3.6) in Ω, we get:

Ei = −1

ρ
ΨEκi

(
γcNκeE

s + γNκeE
inc
)
−ΨMκi

(
γcDE

s + γDE
inc
)
in Ω. (4.2)

We take traces in (4.1) and obtain the Calderón relations

γcDE
s =

{
aCκe − b

(
1
2 I−Mκe

)
C∗0
}
j ≡ Le j on Γ, (4.3)

γcNκeE
s =

{
−a
(

1
2 I−Mκe

)
+ bCκeC

∗
0

}
j≡ Ne j on Γ. (4.4)

On the other hand, taking traces in (4.2) gives:

ρ

(
−1

2
I +Mκi

)(
γcDE

s + γDE
inc
)

+ Cκi

(
γcNκeE

s + γNκeE
inc
)

= 0 on Γ, (4.5)(
−1

2
I +Mκi

)(
γcNκeE

s + γNκeE
inc
)

+ ρCκi
(
γcDE

s + γDE
inc
)

= 0 on Γ. (4.6)

We can now substitute (4.3) and (4.4) into (4.5) and get our first integral equation:

S j ≡ ρ
(
−1

2
I +Mκi

)
Le j+CκiNe j = f (4.7)

where f = −ρ
(
−1

2
I +Mκi

)
γDE

inc − CκiγNκeE
inc. (4.8)
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If we substitute (4.3) and (4.4) into (4.6), we get our second integral equation:

T j ≡ ρCκiLe j+
(
−1

2
I +Mκi

)
Ne j = g (4.9)

where g = −ρCκiγDE
inc −

(
−1

2
I +Mκi

)
γNκeE

inc. (4.10)

Thus we obtain two boundary integral equations for the unknown j. Having solved
either one, we construct Es using (4.1) and Ei using (4.2), (4.3), (4.4):

Ei = −1

ρ

(
ΨEκi

{γNκeE
inc +Ne j}

)
−
(
ΨMκi

{γDEinc + Le j}
)
. (4.11)

Theorem 4.1 If j ∈ H
− 1

2
× (divΓ,Γ) solves (4.7) or (4.9), then Es and Ei given by

(4.1) and (4.11) solve the transmission problem.

Proof. We know that Ei and Es satisfy the Maxwell equations and the Silver-
Müller condition. It remains to verify that Es and Ei satisfy the transmission condi-
tions (2.3) and (2.4). Using the integral representation (4.1) and (4.2) of Es and Ei,
a simple computation gives:

ρ(γcDE
s + γDE

inc − γDEi) = S j−f (4.12)

and

γcNκeE
s + γNκeE

inc − ργNκiE
i = T j−g (4.13)

We deduce that
- if j solves (4.7), then relation (4.12) proves that the condition (2.3) is satisfied,
- if j solves (4.9), then relation (4.13) proves that the condition (2.4) is satisfied.

Now we show that (4.7) and (4.9) are in fact equivalent. Define :
u(x) = −ΨEκi

{γNκeE
inc +Ne j}(x)− ρΨMκi

{γDEinc + Le j}(x) for x ∈ Ωc.
This field u is in Hloc(curl,Ωc) and satisfies the Maxwell system

curl curlu− κ2
iu = 0 (4.14)

in Ωc. On the boundary Γ we have:

γcDu = S j−f and γcNκi
u = T j−g.

Since u solves (4.14) in Ωc and satisfies the Silver-Müller condition, it follows:

j satisfies (4.7)⇒ γcDu = 0⇒ u ≡ 0 in Ω
c ⇒ γcNκi

u = 0⇒ j satisfies (4.9).

j satisfies (4.9)⇒ γcNκi
u = 0⇒ u ≡ 0 in Ωc ⇒ γcDu = 0⇒ j satisfies (4.7).

As a consequence, if j solves one of the two integral equations, it solves both, and
then both transmission conditions (2.3) and (2.4) are satisfied.
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The next theorem is concerned with the uniqueness of the solutions of the bound-
ary integral equations (4.7) and (4.9), i.e., with the existence of nontrivial solutions
of the following homogeneous forms of (4.7) and (4.9):

ρ
(
− 1

2 I +Mκi

)
Le j0 +CκiNe j0 = 0, (4.15)

ρCκiLe j0 +

(
−1

2
I +Mκi

)
Ne j0 = 0. (4.16)

As in the scalar case [19], we associate with the dielectric scattering problem a
new interior boundary value problem, the eigenvalues of which determine uniqueness
for the integral equations.

Associated interior problem: For a, b ∈ C, consider the boundary value problem

curl curlu− κ2
eu = 0 in Ω, aγDu− bC∗0γNeu = 0 on Γ. (4.17)

Lemma 4.2 . Let a, b ∈ C \ {0} and let κe ∈ C. Assume that
(i) Im

(a
b

)
6= 0 if κe ∈ R,

(ii) Im(κ2
e) · Im

(
κe
a

b

)
> 0 if κe ∈ C\R,

then κ2
e is not an eigenvalue of the the associated interior problem (4.17).

Proof. Let κ2
e be an eigenvalue of the interior problem and let u 6= 0 be an

eigenfunction. Using Green’s theorem we have:∫
Ω

| curlu|2 − κ2
e

∫
Ω

|u|2 = κe B(γDu, γNκeu) = κe B(γDu, γNκeu)

=
(
κe
a

b

)
B(γDu, (C

∗
0 )−1γDu) if b 6= 0

= κe
b

a
B(C∗0γNκeu, γNκeu) if a 6= 0

Since C∗0 is elliptic for the bilinear form B, taking the imaginary part, we obtain

− Im(κ2
e)

∫
Ω

|u|2 = − Im
(
κe
a

b

)
B((C∗0 )−1γDu, γDu)

= −|κe|2 Im

(
b

κea

)
B(γNκeu, C

∗
0γNκeu).

Under the hypotheses of the lemma the left-hand side and the right-hand side have
opposite sign, and it follows

B((C∗0 )−1(γDu), γDu) = 0 and B(γNκeu, C
∗
0γNκeu) = 0.

As C∗0 is elliptic for the bilinear form B, the traces γDu and γNκeu then vanish.
Thanks to the Stratton-Chu representation formula (3.3) in Ω, we deduce that u = 0,
which contradicts the initial assumption.
Remark 4.3 Note that this associated interior problem is not an impedance problem
(or Robin problem) as in the scalar case [19]. If we replace in (4.17) the operator C∗0
by the identity, we obtain a “pseudo-impedance” type problem. This is a non-elliptic
problem, about whose spectrum we have no information. That the problem is non-
elliptic can be seen as follows: If it were elliptic, its principal part would be elliptic, too.
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This would be the vector Laplace operator with the “Neumann” condition γNκeu = 0.
Any gradient of a harmonic function in H1(Ω) will satisfy the homogeneous problem,
which therefore has an infinite-dimensional nullspace, contradicting ellipticity. Note
that the issue here is not the apparent non-elliptic nature of the interior Maxwell
curl curl operator, which can easily be remedied by the usual regularization that adds
−∇div, but the manifestly non-elliptic nature of the Maxwell “Neumann” boundary
operator. For a “true” impedance problem, the operator C∗0 would have to be replaced
not by the identity, but by the rotation operator j 7→ n × j which is used in Mautz’s
formulation [24]. This operator leads out of the space H

− 1
2
× (divΓ,Γ), however, which

rules it out for our purposes.
For our integral equations, the problem (4.17) plays the same role as the Robin

problem for the scalar case in [19].
Theorem 4.4 Assume that the hypotheses of Theorem 2.1 are satisfied. Then for
(a, b) 6= (0, 0), the homogeneous integral equations (4.15) and (4.16) admit nontrivial
solutions if and only if κ2

e is an eigenvalue of the associated interior problem.
Proof. Assume that j0 6= 0 solves (4.15) or (4.16).

We construct u2 and u1 as follows:

u2(x) = −aΨEκe
j0(x)− bΨMκe

C∗0 j0(x) for x ∈ Ωc

u1(x) = −1

ρ
ΨEκi

(Ne j0)(x)−ΨMκi
(Le j0)(x) for x ∈ Ω

By Theorem 4.1, u1 and u2 together solve the transmission problem with Einc = 0.
Since this problem admits at most one solution, we have u2 ≡ 0 in Ωc and u1 ≡ 0 in
Ω.
Now we set u(x) = −aΨEκe

j0(x)− bΨMκe
C∗0 j0(x) for x ∈ Ω.

We have on Γ :

γcDu2 − γDu = bC∗0 j0, (4.18)
γcNκeu2 − γNκeu = a j0 . (4.19)

Since γcDu2 = γcNeu2 = 0 on Γ, we find

aγDu− bC∗0γNκeu = 0 on Γ.

Thus u is an eigenfunction associated with the eigenvalue κ2
e of the interior problem

or u ≡ 0. But this latter possibility can be eliminated since it implies that γDu =
γNκeu = 0, whence j0 = 0 by (4.18) and (4.19), which is contrary to the assumption.
Conversely, assume that κ2

e is an eigenvalue of the associated interior problem. Let
v0 6≡ 0 be a corresponding eigenfunction. The Calderón relations in Ω imply that :

−CκeγNκe v0 +
(

1
2 I−Mκe

)
γDv0 = 0,(

1
2 I−Mκe

)
γNκe v0 − CκeγDv0 = 0.

Using the equality aγDv0 − b C∗0γNκe v0 = 0, we obtain

Le(C
∗
0 )−1γDv0 = 0, Ne(C

∗
0 )−1γDv0 = 0, LeγNκe v0 = 0, NeγNκe v0 = 0.

If b 6= 0, then γDv0 6= 0, and j0 = (C∗0 )−1γDv0 is a nontrivial solution of (4.15) and
(4.16).
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If b = 0, then γNκe v0 6= 0, and j0 = γNκe v0 is a nontrivial solution of (4.15) and
(4.16).

Whereas until now we only assumed that the boundary Γ is Lipschitz, we now
present two theorems on the operators S and T that are, in this generality, only valid
for smooth boundaries. By smooth we mean, for simplicity, C∞ regularity, although
a careful check of the proof would show that some finite regularity, such as C 2, would
be sufficient.
Theorem 4.5 Assume that

(i) the boundary Γ is smooth and simply connected,
(ii) the constants a, b, µe, µi, κe and κi satisfy:

(bκe + 2a) 6= 0,

(
1 +

µe
µi

)
6= 0, (b− 2aκe) 6= 0 and

(
1 +

µeκ
2
i

µiκ2
e

)
6= 0.

Then S is a Fredholm operator of index zero on H
− 1

2
× (divΓ,Γ).

Proof. We can rewrite S as follows:

S = 1
4bρC

∗
0 − 1

2bρ(Mκi +Mκe)C
∗
0 + bρMκiMκeC

∗
0 − 1

2aρ(Cκe − Cκe,0)

− 1
2a(Cκi − Cκi,0)− 1

2a(ρCκe,0 + Cκi,0) + aρMκiCκe + aCκiMκe

+b(Cκi − Cκi,0)CκeC
∗
0 + bCκi,0(Cκe − Cκe,0)C∗0 + bCκi,0Cκe,0C

∗
0 .

Thus S is a compact perturbation of the operator

S1 = b
(

1
4ρI + Cκi,0Cκe,0

)
C∗0 −

1

2
a (ρCκe,0 + Cκi,0) .

We have to show that the operator S1 is Fredholm of index zero. For this we use the
Helmholtz decomposition of H−

1
2
× (divΓ,Γ) :

H
− 1

2
× (divΓ,Γ) = ∇ΓH

3
2 (Γ)⊕ curlΓH

1
2 (Γ) . (4.20)

For a detailed proof of (4.20) see [15]. Note that we are assuming that the boundary
Γ is smooth and simply connected. For a proof of the following result, we refer to
[3, 11, 28].
Lemma 4.6 Let Γ be smooth and simply connected and t ∈ R. The Laplace-Beltrami
operator

∆Γ = divΓ∇Γ = − curlΓ curlΓ (4.21)

is linear and continuous from Ht+2(Γ) to Ht(Γ).
It is an isomorphism from Ht+2(Γ)/R to the space Ht

∗(Γ) defined by

u ∈ Ht
∗(Γ) ⇐⇒ u ∈ Ht(Γ) and

∫
Γ

u = 0.

The terms in the decomposition j = ∇Γp+ curlΓ q for j ∈ H
− 1

2
× (divΓ,Γ) are obtained

by solving the Laplace-Beltrami equation:

p = ∆−1
Γ divΓ j , q = −∆−1

Γ curlΓ j .
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The mapping

H
− 1

2
× (divΓ,Γ) → H

3
2 (Γ)/R×H 1

2 (Γ)/R

j = ∇Γp+ curlΓ q 7→
(
p
q

)
(4.22)

is an isomorphism. Using this isomorphism, we can rewrite the operator S1 as an
operator S1 defined from H

3
2 (Γ)/R×H 1

2 (Γ)/R into itself. Then to show that S1 it is
Fredholm of index zero it suffices to show that S1 has this property. Let us begin by
rewriting C∗0 and Cκ,0 as operators C∗0 and Cκ,0 defined on H

3
2 (Γ)/R×H 1

2 (Γ)/R. We
have to determine P0 ∈ H

3
2 (Γ)/R and Q0 ∈ H

1
2 (Γ)/R such that C∗0 (∇Γp+curlΓ q) =

∇ΓP0 + curlΓQ0, and this defines C∗0 by:

C∗0
(
p
q

)
=

(
P0

Q0

)
.

We have

P0 = ∆−1
Γ divΓ C

∗
0 (∇Γp+ curlΓ q)

and

Q0 = −∆−1
Γ curlΓ C

∗
0 (∇Γp+ curlΓ q).

Using the integral representation of C∗0 and the equalities (3.7) and (3.8) we obtain:

C∗0 =

(
C11 C12

C21,1 + C21,2 C22

)
,

where

C11 = −∆−1
Γ curlΓ V0∇Γ, C12 = −∆−1

Γ curlΓ V0 curlΓ,
C21,1 = −∆−1

Γ divΓ V0∇Γ, C22 = −∆−1
Γ divΓ V0 curlΓ,

C21,2 = V0∆Γ.

Some of these operators are of lower order than what a simple counting of orders
(with -1 for the order of V0) would give:
Lemma 4.7 Let Γ be smooth. Then the operators curlΓ V0∇Γ and divΓ V0 curlΓ are
linear and continuous from Ht(Γ) into itself.

Proof. These results are due to the equalities (3.7). One can write (see [28, page
240]):

curlΓ V0∇Γu(x) =

∫
Γ

n(x) · curlx {G(0, |x− y|)∇Γu(y)} dσ(y)

=

∫
Γ

{(n(x)− n(y))×∇xG(0, |x− y|)} · ∇Γu(y)dσ(y)

−V0 curlΓ∇Γu.

The second term on the right hand side vanishes, and the kernel

(n(x)− n(y))×∇xG(0, |x− y|)
14



has the same weak singularity as the fundamental solution G(0, |x − y|). We deduce
the lemma using similar arguments for the other operator.

As a consequence, the operators C11 and C22 are of order -2, the operators C12 and
C21,1 are of order -1 and the operator C21,2 is of order 1. Therefore, C∗0 is a compact
perturbation of (

0 C12

C21,2 0

)
By definition of Cκ,0, the operator Cκ,0 can be written as:

Cκ,0 =

(
−κC11 −κC12

−κC21,1 + κ−1C21,2 −κC22

)
=

(
−κ 0
0 κ−1

)
C∗0 − (κ+ κ−1)

(
0 0
C21,1 C22

)
.

The second term on the right hand side is compact on H
3
2 (Γ)/R×H 1

2 (Γ)/R.

Since Cκ,0 is a compact perturbation of(
−κ 0
0 κ−1

)
C∗0 ,

the sum Cκi,0 + ρCκe,0 is a compact perturbation of(
−(κi + ρκe) 0

0 (κ−1
i + ρκ−1

e )

)
C∗0 .

The operator Cκi,0Cκe,0 is a compact perturbation of(
−κiκ−1

e 0
0 −κ−1

i κe

)
C∗20 .

Remark 4.8 Notice that lemma 4.7 is not true in the Lipschitz case. Nevertheless,
one can use the Helmholtz decomposition also for a Lipschitz boundary. One only has
to replace the space H

3
2 (Γ) by the more general space

H(Γ) = {u ∈ H1(Γ), ∆Γu ∈ H−
1
2 (Γ)} ,

see [4, 7]. Then a large part of the previous arguments is still valid. For example, the
operators C11 and C22, being of order −1, are still compact from H(Γ) and H

1
2 (Γ),

respectively, to themselves. By the compactness of the embedding H(Γ) ↪→ H
1
2 (Γ) we

deduce that the operator C21,1 is still compact from H(Γ) to H
1
2 (Γ). The complete

proof of the theorem does not go through, however, because it uses the compactness of
Mκ.

Lemma 4.9 For smooth Γ, the operator C∗20 is a compact perturbation of − 1
4 I.

Proof. It suffices to consider the principal part of (3.9).
Collecting all the results, we find that S1 is a compact perturbation of(

1
4b(ρ+ κiκ

−1
e )− 1

2a(κi + ρκe) 0
0 1

4b(ρ+ κ−1
i κe) + 1

2a(κ−1
i + ρκ−1

e )

)
C∗0 . (4.23)
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We recall that ρ =
µeκi
µiκe

. The matrix written above is invertible if:

1

4
b(ρ+ κiκ

−1
e )− 1

2
a(κi + ρκe) 6= 0 ⇔ 1

4
(b− 2aκe)

(
1 +

µi
µe

)
6= 0

and

1

4
b(ρ+ κ−1

i κe) +
1

2
a(κ−1

i + ρκ−1
e ) 6= 0 ⇔ 1

4
(bκe + 2a)

(
1 +

µiκ
2
e

µeκ2
i

)
6= 0.

Since the operator C∗0 is invertible, we conclude that under the conditions of the
theorem the operator S1 is Fredholm of index zero and therefore S too. The theorem
is proved.

Using similar arguments we obtain the following theorem.
Theorem 4.10 Assume that

(i) the boundary Γ is smooth and simply connected,
(ii) the constants a, b, µe, µi, κe and κi satisfy:

(bκe − 2a) 6= 0,

(
1 +

µe
µi

)
6= 0, (b+ 2aκe) 6= 0 and

(
1 +

µeκ
2
i

µiκ2
e

)
6= 0.

Then T is a Fredholm operator of index zero in H
− 1

2
× (divΓ,Γ).

Proof. The operator T is a compact perturbation of

T1 = a

(
1

4
I + ρCκi,0Cκe,0

)
− b

2
(Cκe,0 + ρCκi,0)C∗0 .

We use again the Helmholtz decomposition of H−
1
2
× (divΓ,Γ) and rewrite the operators

Cκ,0 as operators defined on H
3
2 (Γ)/R × H 1

2 (Γ)/R. Collecting the results from the
previews proof we found that the term

(
Cκe,0 + ρCκi,0

)
C∗0 is a compact perturbation

of

1

4

(
(κe + ρκi) 0

0 −(κ−1
e + ρκ−1

i )

)
.

Finally the operator T1 is a compact perturbation of

1

4

(
a
(
1 + ρκiκ

−1
e

)
− 1

2b (κe + ρκi) 0
0 a

(
1 + ρκeκ

−1
i

)
+ 1

2b
(
κ−1
e + ρκ−1

i

) ) . (4.24)

Note that under standard hypotheses on the materials and for real frequencies, the

material factors such as
(
1 +

µe
µi

)
and

(
1 +

µeκ
2
i

µiκ2
e

)
are always non-zero.

Remark 4.11 Thanks to the explicit representations (4.23) and (4.24) one can de-
duce Gårding inequalities (positivity modulo compact perturbations) in H

− 1
2
× (divΓ,Γ)

for S (via the bilinear form B) and for T (via the L2-duality pairing) in the case of a
domain diffeomorphic to a ball.

When Γ is a only a Lipschitz continuous surface, one can still prove that the
operators S and T are Fredholm operators of index zero, if one imposes more restrictive
hypotheses on the physical parameters. We have the following Gårding inequalities.
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Theorem 4.12 Assume that
(i) µe, µi, κe and κi are positive real numbers.
(ii) a = 1 and b = −iη with η ∈ R, η > 0,

Then the operators S and T satisfy the following Gårding inequalities

Im
(
B(S j, j) + cS(j, j)

)
≥ CS || j ||

H
− 1

2
× (divΓ,Γ)

Re
(
B(TC∗−1

0 j, j) + cT (j, j)
)
≥ CT || j ||

H
− 1

2
× (divΓ,Γ)

where cS and cT are compact bilinear forms and CS and CT are positive real constants.
Proof. According to the definitions (4.3)–(4.7) and Lemma 3.7, the operator S is

a compact perturbation of

S1 = −iη
(
ρ
(
− 1

2 I +M0

)2
+Cκi,0Cκe,0

)
C∗0− 1

2 (ρCκe,0 + Cκi,0)+ρCκe,0M0+M0Cκi,0.

Let j ∈ H
− 1

2
× (divΓ,Γ). The term B((ρCκe,0 + Cκi,0) j, j) is real. We also have

B(Cκe,0M0 j, j) = −B(M0 j, Cκe,0j) = B(j,M0Cκe,0j) = −B(M0Cκe,0j, j)

The term M0Cκe,0 is a compact perturbation of MκeCκe and MκeCκe = −CκeMκe ,
thus

B(Cκe,0M0 j, j) = B(Cκe,0M0 j, j) + compact = ReB(Cκe,0M0 j, j) + compact

In the same way we have

B(M0Cκi,0 j, j) = ReB(M0Cκi,0 j, j) + compact.

Using now the Calderón relations (3.9) and the fact that C∗0 = iCκ,0 for κ = i, we
see that M0C

∗
0 is a compact perturbation of −C∗0M0. It follows that

(
− 1

2 I +M0

)2
C∗0

is a compact perturbation of
(
− 1

2 I +M0

)
C∗0
(
− 1

2 −M0

)
and we have

B
((
− 1

2 I +M0

)
C∗0
(
− 1

2 I−M0

)
j, j
)

= B
(
C∗0
(
− 1

2 I−M0

)
j,
(
− 1

2 I−M0

)
j
)

Since C∗0 is elliptic for the bilinear form B we have with Lemma 3.8

−B
((
− 1

2 I +M0

)2
C∗0 j, j

)
+ c1(j, j) = −B

(
C∗0
(

1
2 I +M0

)
j,
(

1
2 I +M0

)
j
)

≥ α1||
(

1
2 I +M0

)
j ||2

H
− 1

2
× (divΓ,Γ)

≥ α2|| j ||2
H

− 1
2

× (divΓ,Γ)
− c2(j, j) ,

where c1(·, ·) and c2(·, ·) are compact bilinear forms and α1 and α2 are positive con-
stants.

Now for brevity write S∗0 = n× V0 and T ∗0 = curlΓ V0 divΓ. Taking into account
that (T ∗0 )2 = 0 and that (S∗0 )2 : H

− 1
2
× (divΓ,Γ) → H

− 1
2
× (divΓ,Γ) is compact (it maps

continuously into H0
×(divΓ,Γ) which is compactly imbedded in H

− 1
2
× (divΓ,Γ)), we get

from the definitions

Cκi,0Cκe,0C
∗
0 = −κiκ−1

e S∗0T
∗
0 S
∗
0 − κ−1

i κeT
∗
0 S
∗
0T
∗
0 + compact.
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The terms S∗0T ∗0 S∗0 and T ∗0 S∗0T ∗0 give positive contributions, namely we have

−B
(
S∗0T

∗
0 S
∗
0 j, j

)
=

∫
Γ

(curlΓ V0j) · V0(curlΓ V0 j) ≥ 0

−B
(
T ∗0 S

∗
0T
∗
0 j, j

)
=

∫
Γ

(curlΓ V0 divΓ j) · V0(curlΓ V0 divΓ j) ≥ 0

Therefore there exists a compact bilinear form c3 such that

−B(Cκi,0Cκe,0C
∗
0 j, j) + c3(j, j) ≥ 0 .

Collecting all the results, we can write

ImB
(
S j, j

)
= η

(
−B

(
C∗0
(

1
2 I +M0

)
j,
(

1
2 I +M0

)
j
)
− B(Cκi,0Cκe,0C

∗
0 j, j)

)
− cS(j, j)

where −cS(j, j) = η
(
c1(j, j) + c2(j, j) + c3(j, j)

)
+ ImB

(
(ρCκe,0M0 + M0Cκi,0) j, j) +

B
(
(S− S1) j, j) is a compact bilinear form and

Im
(
B
(
S j, j

)
+ cS(j, j)

)
≥ CS || j ||

H
− 1

2
× (divΓ,Γ)

with CS = ηα2. Similar arguments can be used for the operator TC∗−1
0 .

5. Integral equations 2. The second method is based on a layer ansatz for the
interior field: We assume that the interior electric field Ei can be represented either
by ΨEκi

j or by ΨMκi
j where the density j ∈ H

− 1
2
× (divΓ,Γ) is the unknown function

we have to determine. We begin with the Stratton-Chu representation formula (3.5)
in Ωc:

Es(x) = ΨEsγ
c
Nκe

(
Es + Einc

)
(x) + ΨMκe

γcD
(
Es + Einc

)
(x) x ∈ Ωc (5.1)

We then apply the exterior traces γcD and γcNκe and use on both sides of (5.1) the
transmission conditions. The result is a relation between the traces of Ei on Γ:

γDE
i − γcDE

inc = −ρCκeγNκiE
i +
(
− 1

2 I +Mκe

)
γDE

i, (5.2)

ργNκiE
i − γcNκeE

inc = −CκeγDE
i + ρ

(
− 1

2 I +Mκe

)
γNκiE

i. (5.3)

In the scalar case, to construct the integral equations one would simply take a linear
combination of (5.2) and (5.3). Here we multiply (5.2) by a and (5.3) by bC∗0 and
subtract to obtain:

ρL′eγNκiE
i −N ′eγDE

i = h sur Γ (5.4)

where the operators L′e and N ′e are defined for all j ∈ H
− 1

2
× (divΓ,Γ) by :

L′e j =
{
aCκe − bC∗0

(
1
2 I +Mκe

)}
j,

N ′e j =
{
−a
(

1
2 I +Mκe

)
+ bC∗0Cκe

}
j,

and

h = aγDE
inc − bC∗0γNκeE

inc ∈ H
− 1

2
× (divΓ,Γ). (5.5)

If Ei is represented by the potential ΨEκi
applied to a density j ∈ H

− 1
2
× (divΓ,Γ)

Ei(x) = −(ΨEκi
j)(x), x ∈ Ω, (5.6)
18



we obtain

γDE
i = Cκi j and γNκiE

i =
(

1
2 I +Mκi

)
j on Γ (5.7)

Substituting (5.7) in (5.4), we obtain a first integral equation:

S′ j ≡
{
ρL′e

(
1
2 I +Mκi

)
−N ′eCκi

}
j = h on Γ (5.8)

This is an integral equation for the unknown j ∈ H
− 1

2
× (divΓ,Γ). Having solved

this equation, we construct Ei and Es by the representations (5.6) in Ω and

Es = ρ
(
ΨEκe

(
1
2 I +Mκi

)
j
)

(x) +
(
ΨMκe

Cκi j
)

(x) x ∈ Ωc. (5.9)

If Ei is represented by the potential ΨMκi
applied to a density m ∈ H

− 1
2
× (divΓ,Γ)

Ei(x) = −(ΨMκi
m)(x), x ∈ Ω, (5.10)

we obtain:

γDE
i =

(
1
2I +Mκi

)
m and γNκiE

i = Cκim on Γ. (5.11)

Substituting (5.11) in (5.4), we obtain a second integral equation:

T′m ≡
{
ρL′eCκi −N ′e

(
1
2 I +Mκi

)}
m = h on Γ. (5.12)

This is an integral equation for the unknown m ∈ H
− 1

2
× (divΓ,Γ). Having solved

this equation, we construct Ei and Es by the representations (5.10) in Ω and:

Es(x) = ρ
(
ΨEκe

Cκim
)

(x) +
(
ΨMκe

(
1
2 I +Mκi

)
m
)

(x), x ∈ Ωc. (5.13)

Contrary to the preceding method from the previous section, the two integral
equations are not equivalent, in general. The following theorem corresponds to The-
orem 4.1. The proof is similar to the scalar case.
Theorem 5.1 We assume that κ2

e is not an eigenvalue of the associated interior prob-
lem (4.17).
If j ∈ H

− 1
2
× (divΓ,Γ) solves (5.8), then Ei and Es, given by (5.6) and (5.9) respectively,

solve the dielectric scattering problem.
If m ∈ H

− 1
2
× (divΓ,Γ) solves (5.12), then Ei and Es, given by (5.10) and (5.13) respec-

tively, solve the dielectric scattering problem.
Proof. In each case the integral representations of Ei and Es satisfy the Maxwell

equations and the Silver-Müller condition. It remains to prove that the transmission
conditions are satisfied. We prove it for the equation (5.12), the arguments being
similar for (5.8).
Assume that m solves (5.12) which we rewrite as :

a
{
ρCκeCκim +

(
1
2 I +Mκe

) (
1
2 I +Mκi

)
m− γDEinc

}
−bC∗0

{
ρ
(

1
2 I +Mκe

)
Cκim + Cκe

(
1
2 I +Mκi

)
m− γNκeE

inc
}

= 0.
(5.14)

Then, using the integral representation (5.13) of Es, we obtain :

(γcDE
s + γcDE

inc − γDEi) = −ρCκeCκim−
(

1
2 I +Mκe

) (
1
2 I +Mκi

)
m + γDE

inc,

(γcNκeE
s+γcNκeE

inc− ργNκiE
i) = −ρ

(
1
2 I+Mκe

)
Cκim− Cκe

(
1
2 I+Mκi

)
m + γcNκeE

inc.

We have to show that the right hand sides of these equalities vanish.
We introduce the function v defined on Ω by
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v(x) = −ρΨEκe
Cκim−ΨMκe

(
1
2 I +Mκi

)
m− Einc.

By equation (5.14) we have aγDv−bC∗0γNκe v = 0. Since Einc satisfies the Maxwell
system curl curl v − κ2

ev = 0 in Ω, v satisfies it, too. By hypothesis, κ2
e is not an

eigenvalue of the associated interior problem, which implies v ≡ 0 in Ω. In particular,
γDv and γNκe v vanish, which shows that the above right hand sides are indeed zero
and that the transmission conditions are satisfied.
Theorem 5.2 Assume that the hypotheses of Theorem 2.1 are satisfied and that κ2

e

is not an eigenvalue of the associated interior problem (4.17). Then the operators S′

and T′ are injective.
Proof. We prove the result for the operator T′, similar arguments being valid for

S′.
Assume that m0 ∈ H

− 1
2
× (divΓ,Γ) solves the homogeneous equation :

T′m0 = ρL′eCκim0 −N ′e
(

1
2 I +Mκi

)
m0 = 0. (5.15)

We want to show that m0 = 0.
We construct v1 and v2 as follows:

v2(x) = ρ(ΨEκe
Cκim0)(x) +

(
ΨMκe

{
1
2 I +Mκi

}
m0

)
(x), x ∈ Ωc,

and
v1(x) = −(ΨMκi

m0)(x), x ∈ Ω.
By Theorem 5.1, these functions solve the homogeneous scattering problem (i.e.

when Einc ≡ 0), and therefore v1 ≡ 0 in Ω and v2 ≡ 0 in Ωc. Now we define
v(x) = −(ΨMκi

m0)(x) x ∈ Ωc

We have γcNκiv = Cκim0 = γNκi v1 = 0. Since v satisfies the Silver-Müller condition,
we have v ≡ 0 in Ωc. Thus v ≡ 0 is R3 and [γD]v = m0 = 0.
Remark 5.3 The operators S′ and T′ are the dual operators of S and T, respectively,
for the bilinear form B. Therefore they are Fredholm of index zero under the same
hypotheses as those given in Theorems 4.5, 4.10 and 4.12.

In order that each of the four integral equations admit a unique solution for all
positive real values of κe, we will now give an example of how to choose the constants
a and b such that the associated interior problem does not admit any real eigenvalue.

We summarize all the previous results in the final theorem.
Theorem 5.4 Assume that the boundary Γ is smooth and simply connected and

(i) κe is a positive real number or Im(κe) > 0 and Re(κ2
e) 6= 0,

(ii) a = 1 and b =

{
iη with η ∈ R\{0} if κ2

e ∈ R
−iηκe · sign(Im(κ2

e)) with η ∈ R, η > 0 otherwise,

(iii)
µi
µe
6= −1,

µeκ
2
i

µiκ2
e

6= −1.

Then the operators S, T, S′ and T′ are invertible in H
− 1

2
× (divΓ,Γ). Moreover, given

the electric incident field Einc ∈ Hloc(curl,R3), the four integral equations (4.7),
(4.9), (5.8), (5.12) each have a unique solution, and the integral representations {(4.1),
(4.11)}, {(5.6), (5.9)} and {(5.10), (5.13)} of Ei and Es give the solution of the di-
electric scattering problem.
If Γ is only Lipschitz, then the conclusions remain valid if the conditions (i) to (iii)
are replaced by the more restrictive assumptions

(iv) µe, µi, κe and κi are positive real numbers.
(v) a = 1 and b = −iη with η ∈ R, η > 0,
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6. Discussion. In this paper we have described and analyzed modified boundary
integral equations to solve a radiation problem for the Maxwell system that are stable
for all wave numbers. Generalizing the approach of Kleinman and Martin to the
Maxwell system by employing a suitable regularizing operator introduced by Steinbach
and Windisch, in Section 4 we have derived two boundary integral equations using an
ansatz for the exterior field and in Section 5 we have derived two integral equations
using an ansatz for the interior field. Note that if it is only the exterior field that is of
interest, one can choose an integral equation which gives a simple representation for
Es, e.g. (4.7) or (4.9). This choice was used in the PhD thesis [21] for an application
to a shape optimization problem involving the far field pattern [12]. For numerical
results using this method, we refer to [21].

In [22] P. A. Martin and P. Ola established the existence and the uniqueness
of the solution to an integral equation analogous to (4.7) for all real values of the
exterior wave number by adapting a regularization method that was introduced by
Kress [9] in the framework of spaces of continuous functions, namely by using the
operator j 7→ n × V 2

0 j in the place of our C∗0 . This technique would not yield four
families of Fredholm boundary integral operators of index zero in H

− 1
2
× (divΓ,Γ) since

the invertibility of the regularizing operator is needed in our arguments (see the proof
of Theorem 4.5). A more interesting advantage of the operator C∗0 is the possibility
to use our regularization method on Lipschitz boundaries since this operator still is
elliptic.

Numerical analysis using similar CFIE-based methods for the scattering of homo-
geneous penetrable objects are presented in [33]. The proposed integral equation also
contains double and triple operator products. Stable discretization of these operator
products can be obtained by multiplying matrices arising from the discretization of
the various operators using specific basis and testing functions [1]. As is shown there,
preconditioners from the same class of operators are also easily constructed. The con-
clusion is that appropriately preconditioned CFIE-based single-source formulations
are more efficient than the coupled integral equations.
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