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Abstract. We consider spline collocation methods for a class of parabolic pseudodiffer-

ential operators. We show optimal order convergence results in a large scale of anisotropic
Sobolev spaces. The results cover for example the case of the single layer heat operator

equation when the spatial domain is a disc.

1. Introduction.

The integral equation method for the solution of parabolic problems is known already
for a long time, for the early literature see [23],[21],[28,29,30]. The reasons which recom-
mend this method instead of the domain methods are similar as in the elliptic case. The
main arguments are: In the level of the numerical implementation there is a reduction
in the dimension of the matrix equation to be solved. The method is very suitable for
exterior problems. Moreover, by using the direct method the unknown function is a
quantity of physical interest.

In contrast to the elliptic case, there does not exist any general theory for the nu-
merical solution of the parabolic boundary integral equations. There are results which
are limited to special examples. The equations of the second kind have been studied
in the works of Onishi [25], and Costabel, Onishi, Wendland [10]. For the equations of
the first kind, there are satisfactory results only for the Galerkin solution of the single
layer heat equation [8],[24]. The computationally more attractive collocation method is
not yet fully understood. Hamina and Saranen [15] were able to show convergence of
the spline collocation for the single layer heat equation in the case of the circle. These
results have been extended by Hämäläinen and Saranen [19], [20] to the case of a general
domain with smooth boundary when the arclength is used as parametrization. However,
the convergence results which they obtained are not of optimal order. For a different
approach using time discretization for parabolic boundary integral equations we refer
to [22].

In the study of the numerical methods for parabolic boundary integral equations, it
is useful to know which other representations for the operators are available in addition
to the natural kernel representation. In the elliptic case, application of the theory
of pseudodifferential operators has turned out be very efficient and a large variety of
general results have been obtained by this framework. It seems now possible to analyze
numerical schemes for parabolic boundary integral equations with the help of parabolic
pseudodifferential operators acting in anisotropic Sobolev spaces.
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The present paper gives a starting point in this direction; we obtain optimal order
convergence results for the spline collocation method for the class of operators which
we call of convolutional type. In practical terms this class covers equations given on
circular boundaries. In future works we will discuss more general type of operators
which cover the case of general smooth boundaries and even moving domains.

It is worth mentioning that even in the case of elliptic problems, the stability and
convergence of spline collocation in higher dimensions is not generally known. To our
knowledge, there are results only for some special cases, where the equation is given
on a torus [3],[32],[9], square or cube [11],[31]. For the spline collocation in the one
dimensional case we refer to the basic papers [4],[5],[33],[34]. In our case the integral
equation is given on a cylindrical domain. For the discretization we use uniform meshes
and the analysis of the collocation equations is based mainly on Fourier techniques.
However, it was not a priori obvious how to handle efficiently the collocation problem
in this situation, where the mesh is infinite in one direction.

For the numerical solution, one considers a problem on a finite time interval, which
leads to the solution of a finite-dimensional system of equations. For the numerical
analysis, however, it turned out that one cannot treat this finite-dimensional problem
directly, so we had to choose a different way. The basic idea of our approach is to
consider first the “whole space problem”, i. e. the problem with the infinite time axis,
for a properly chosen principal part of the operator. For the solution of this whole space
problem, we apply discrete Fourier transforms in both the space and the time direction.
With respect to the space variable, this is the conventional discrete Fourier transform
method for periodic functions (or sequences). With respect to the time variable, this
transform is a periodic function which is defined for a class of non-periodic functions
(sequences) on the whole time interval. Now the discretized whole-space problem is an
infinite-dimensional system of equations which requires different tools from those used
traditionally.

One of the main properties which makes the analysis of the collocation method pos-
sible is the coercivity of the parabolic boundary integral operators in an anisotropic
Sobolev space. The discrete analogue of this property, namely the ellipticity of the
numerical symbol, implies the stability of the method. This ellipticity requires a com-
plicated proof in the case of splines of even degree (see the Appendix). A similar
situation is known from the analysis of the higher dimensional spline collocation for
elliptic equations, see Costabel and McLean [9]. For the stability and optimal order
estimates we need to impose the well-known condition relating the space and time step
sizes, ht ∼ h2

θ = h2. Although we have focused here on parabolic boundary integral
equations, it seems that our method may be useful for the analysis of elliptic problems
in the non-periodic case, too.

In addition to the basic optimal order convergence results, we obtain improved error
estimates when using even degree splines in the space direction. These results extend the
observation of Saranen [33] to the parabolic case. They are useful in particular when
heat potentials are approximated by the collocation method for boundary densities.
The basic examples covered by our work are the single layer and the hypersingular heat
operators. In order to preserve the vanishing initial condition of the heat equation,
we have to use splines of low degree in the time direction: only piecewise constant or
piecewise linear continuous splines are considered. With this restriction of the order
of the method, we obtain convergence of order O(h5) for the single layer operator and
O(h3) for the hypersingular heat operator.
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2. Preliminaries.

In the following analysis we use anisotropic Sobolev spaces of functions (distributions)
u(θ, t) which are 1-periodic with respect to the spatial variable θ. For s ∈ R let Hs, s

2 =
Hs, s

2 (Rθ×Rt) to be the anisotropic space with the norm ||u||s, s
2

given by

||u||2s, s
2

=
1

2π

∑

n∈Z

∫

R

(1 + |n| + |η|
1
2 )2s |û(n, η)|

2
dη,

where

û(n, η) =

1
2∫

− 1
2

∫

R

e−in2πθ−iηtu(θ, t)dt dθ .

We also need the corresponding spaces of functions, where the vanishing initial
condition at t = 0 and finite time interval are taken into account. For this we put
R2

T := Rθ×(0, T ) and define

H̃s, s
2 = {u ∈ Hs, s

2 | suppu ⊂ Rθ×[0,∞)},

H̃s, s
2 (R2

T ) = {u = U |Rθ×(−∞,T ) : U ∈ H̃s, s
2 }.

The norm of the spaces H̃s, s
2 (R2

T ) is given by the usual infimum norm,

||u||s, s
2 ;T = inf{||U ||s, s

2
: u = U |Rθ×(−∞,T ), U ∈ H̃s, s

2 }.

In the following we consider operators which are of Volterra type. By the definition the
operator L is of Volterra type, if the following property is satisfied for all t ∈ R: if u
vanishes in the domain τ < t, then Lu also has this property. We assume that the
operator L takes the form

(2.1a) L = A+B,

where the main part A is given by

(2.1b) Au(θ, t) =
1

2π

∑

n∈Z

∫

R

a(n, η)û(n, η)ein2πθ+iηtdη

and the symbol a(ξ, η) satisfies the following conditions with β ∈ R, c0 > 0, and a
number 0 < γ ≤ 1,

(2.1c) a ∈ C∞(R2),

(2.1d) a(λξ, λ2η) = λβa(ξ, η), λ ≥ 1, |ξ| + |η|
1
2 ≥ γ,

(2.1e) Re a(ξ, η) ≥ c0(|ξ|+ |η|
1
2 )β , |ξ| + |η|

1
2 ≥ γ,

(2.1f) The mapping η 7→ a(ξ, η) has a polynomially bounded analytic continuation
into the domain z = η − iσ, σ > 0 which is continuous for σ ≥ 0,

(2.1g) B : H̃s, s
2 (R2

T ) → H̃s−β+δ, s−β+δ
2 (R2

T ) is bounded for a 0 < δ ≤ 1
the operator B is of Volterra type,

(2.1h) L : H̃s, s
2 (R2

T ) → H̃s−β, s−β
2 (R2

T ) is an isomorphism.



4 M. COSTABEL AND J. SARANEN

Remark 2.1. The function a(ξ, η), |ξ| + |η|
1
2 ≥ γ is the called principal symbol of the

operator L. Note that (2.1d) implies the upper bound

(2.2) |a(ξ, η)| ≤ c1(|ξ|+ |η|
1
2 )β, |ξ| + |η|

1
2 ≥ γ.

In the case of the classical parabolic boundary integral operators the principal symbol
a(ξ, η) is defined for all (ξ, η) 6= (0, 0) which means that γ can be taken to be arbitrarily
small. This fact has some importance later when discussing the collocation method.

Remark 2.2. Condition (2.1e) describes the coercivity of the operator. It is essential
for the numerical analysis, in particular for the stability of numerical approximations.
This property does not appear in the general theory of pseudodifferential operators of
Volterra type in [26], [27].

Remark 2.3. Condition (2.1f) describes the Volterra property of A [26].

Remark 2.4. Particular examples of operators which satisfy assumption (2.1) are the
single layer heat operator (β = −1) and the hypersingular heat operator (β = 1) when
the spatial domain is a disc. For the general domains with smooth boundary (2.1) covers
the equations of the second kind. In these cases we may choose δ = 1.

From (2.2) it follows that A defines a continuous mapping A : Hs, s
2 → Hs−β, s−β

2 .

Moreover, using the Volterra property we deduce that A : H̃s, s
2 (R2

T ) → H̃s−β, s−β
2 (R2

T )
is well-defined and bounded. For a more general class of operators including those
described by the assumption (2.1), see [26][27].

Example 2.1. Let E(·, ·) be the fundamental solution of the heat equation and consider
the single layer heat operator

(a) LΓuΓ(x, t) =

t∫

0

∫

Γ

uΓ(y, τ)E(x− y, t− τ)dsy dτ

on the smooth closed curve Γ. Having the parametric representation θ 7→ x(θ) of Γ we
put u(θ, t) = uΓ(x(θ), t) and define the operator

(b) Lu(θ, t) =

t∫

0

1∫

0

u(φ, τ)E(x(θ)− x(φ), t− τ))|x′(φ)|dφ dτ.

If Γ is a circle with radius r, then the operator L has the principal symbol

(c) a(ξ, η) =
r

2(|ξ|2 + iη)
1
2

.

The operator L satisfies all the assumptions (2.1a-h), see [2],[8],[16],[24]. The formula
(c) for the principal symbol can be determined by using [27], or more directly applying
Laplace transform to the kernel representation (b) and utilizing the asymptotic formulae
of [1] for the appearing Bessel functions.
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Example 2.2. Further examples of operators satisfying conditions (2.1) of arbitrarily
high order can be obtained by defining

A4m+βu(θ, t) =
1

2π

∑

n6=0

∫

R

(n4 + η2)m(αn2 + iη)β/2û(n, η)ein2πθ+iηtdη .

Here m is a nonnegative integer, −2 < β < 2, α > 0. The order of A4m+β is 4m+ β.
Of particular importance are these operators with m = 0. The principal symbol is in
this case

(2.3) aβ(ξ, η) = (α|ξ|2 + iη)β/2.

Note that the coercivity condition (2.1e) is satisfied for (2.3) if and only if |β| < 2.

For shortness we write the representation (2.1b) as

(2.4) Au(x) =
1

2π

∫

Z×R

a(ζ)û(ζ)ei〈x,ζ〉dζ,

where x = (θ, t), ζ = (n, η), 〈x, ζ〉 = n2πθ+ηt, and the integration notation
∫
dζ means

the summation with respect of the first variable and integration with respect the second
variable.

For our analysis the following modification of A is useful. We introduce the modified
symbol a∗(ξ, η) putting

(2.5) a∗(ξ, η) =

{ 1
2 (1 + ξ)a(1, η) + 1

2 (1 − ξ)a(−1, η), |ξ| < 1, η ∈ R,

a(ξ, η), |ξ| ≥ 1, η ∈ R

and define A∗ by the formula (2.1b) replacing a with a∗. Now we have

A∗ : Hs, s
2 → Hs−β, 12 (s−β) is an isomorphism,(2.6a)

Re a∗(ξ, η) ≥ c0 (1 + |ξ|+ |η|
1
2 )β , ξ, η ∈ R,(2.6b)

Re (A∗u|u) ≥ c′0 ||u||
2
α, α

2
, u ∈ Hα, α

2 , α = β
2 ,(2.6c)

whereas A need not to have these properties. Here (u|v), u ∈ Hs, s
2 , v ∈ H−s,− s

2

denotes the natural continuation of the L2-inner product.

3. Collocation problem.

Let N be a positive integer and ht > 0. We introduce the uniform meshes {θk =
khθ}, k ∈ Z, hθ = 1

N and {tl = lht}, l ∈ Z. If we are especially interested on the

approximate solution on the interval [0, T ], it is natural to choose ht = T
M , M ∈ N.

In the following analysis we apply spline collocation at the nodal points of the mesh.
For this, let Sdθ

hθ
be the space of all 1-periodic smoothest splines of degree dθ ∈ N0

subordinate to the mesh {θk}, if dθ is an odd integer, and subordinate to the shifted

mesh {(k + 1
2 )hθ}, if dθ is an even integer. Correspondingly, let V dt

ht
be the space

of (non-periodic) splines of degree dt on R. Observe that functions in V dt

ht
have no

growth condition at infinity. For our purpose it is more convenient to use the spaces
Sdt

ht
= V dt

ht
∩ L2(R). These spaces are infinite-dimensional and, assuming N ≥ dθ + 1,
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the spaces Sdθ

hθ
are N -dimensional. For approximation of functions u(θ, t) we use the

tensor product spaces Sdθ

hθ
×Sdt

ht
.

In this section we consider collocation approximation of the equation

(3.1) A∗u = f.

The collocation problem is: find uh ∈ Sdθ

hθ
×Sdt

ht
such that

(3.2) A∗uh(xκ) = f(xκ), κ ∈ ZN× Z

where xκ = (θk, tl), κ = (k, l) and ZN = {n ∈ Z| − N
2 < n ≤ N

2 }. Observe that
no initial condition is imposed in this whole space setting. We shall show that under
certain assumptions the collocation equations are uniquely solvable. For the analysis
we apply Fourier techniques. We recall the Fourier representation of spline functions.
Let ̟ be the characteristic function of the unit interval (−1

2 ,
1
2 ). We define the basic

functions χdt

ht,l
of Sdt

ht
by χdt

ht,l
(τ) = ̟dt(ht

−1τ − l), l ∈ Z, where ̟dt is the dt+1-fold

convolution of ̟. Correspondingly, we have the 1-periodic basic splines φdθ

hθ ,k, k ∈ ZN

and the basis functions ψd
h,κ = φdθ

hθ,k × χdt

ht,l
, κ ∈ ZN × Z for Sdθ

hθ
×Sdt

ht
. Function

uh ∈ Sdθ

hθ
×Sdt

ht
has the unique representation uh = uh{cκ} =

∑
κ cκψ

d
h,κ such that

{cκ} ∈ L2(ZN ×Z). Here L2(ZN×Z) is the space of the double sequences {cκ|κ ∈ ZN×Z}

such that
∑

κ∈ZN×Z
|cκ|

2 < ∞. Using the Fourier transform (F̟)(η) = sin(η/2)
η/2 we

obtain

ψ̂d
h,κ(ζ) = e−i〈xκ,ζ〉ψ̂d

h(ζ)(3.3)

= hθhte
−i〈xκ,ζ〉 [(F̟)(2πhθn)]

dθ+1
[(F̟)(htη)]

dt+1
,

where ψd
h = ψd

h,(0,0). By (3.3) we get the following recurrence relation for the Fourier

coefficients of the spline functions uh ∈ Sdθ

hθ
×Sdt

ht

(3.4) ûh(n+pN, η+q 2π
ht

) = (−1)κp,q

[
n

n+pN

]dθ+1[
η

η+q 2π
ht

]dt+1

ûh(n, η),

where κp,q = p(dθ+1)+q(dt+1). The essential tool in our analysis is the discrete Fourier
transform together with a generalized version of the Poisson formula for functions in
Hs, s

2 . For the case of ordinary Sobolev spaces see [6]. We need the following Sobolev
embedding result for anisotropic spaces [20]. We recall shortly also the proof of this
basic result.

Theorem 3.1. Assume s > 3
2 . If u ∈ Hs, s

2 , then u is a continuous bounded function

in Rθ×Rt and the embedding Hs, s
2 ⊂ C(Rθ×Rt) is continuous such that

(3.5) sup |u(θ, t)|
(θ,t)∈Rθ×Rt

≤ c(s)||u||s, s
2
, u ∈ Hs, s

2 .

Proof. One easily verifies that the function

I(s) =
∑

n∈Z

∫

R

(1 + |n| + |η|
1
2 )−2sdη, s ∈ R
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is finite if and only if s > 3
2 . Let C∞

10 be the space of the smooth functions u(θ, t) which
are 1-periodic with respect to θ and vanish identically for sufficient large t. Since this
space is dense in Hs, s

2 it is enough to prove (3.5) for u ∈ C∞
10 . By using the Fourier

representation of u and the Cauchy-Schwarz inequality, we obtain

|u(θ, t)| ≤
1

2π

∑

n∈Z

∫

R

|û(n, η)|dη ≤

√
I(s)

2π
||u||s, s

2
. �

The classical Poisson formula extends for functions u ∈ Hs, s
2 , s > 3

2 . In this connec-
tion we introduce the discrete Fourier transform for sequences and functions. Having a
sequence c = {cκ} ∈ L2(ZN×Z) the discrete Fourier transform c̃(ζ), ζ ∈ ZN×Rht

, Rht
=

(− π
ht
, π

ht
) of c is defined as

(3.6) c̃(ζ) = hθht

∑

κ∈ZN×Z

cκe
−i〈xκ,ζ〉, ζ ∈ ZN×Rht

.

We have c̃ ∈ L2(ZN×Rht
) and the mapping c 7→ c̃ from L2(ZN× Z) to L2(ZN×Rht

) is
an isomorphism such that

(3.7) ( c | d )h = 1
2π

( c̃ | d̃ )L2(ZN×Rht
),

where the inner-products are defined by

( c | d )h = hθht

∑

κ∈ZN×Z

cκd̄κ ,(3.8a)

( c̃ | d̃ )L2(ZN×Rht
) =

∫

ZN×Rht

c̃(ζ)d̃(ζ) dζ.(3.8b)

The inverse mapping c̃ 7→ c is given by

(3.9) cκ =
1

2π

∫

ZN×Rht

c̃(ζ)ei〈xκ,ζ〉dζ, κ ∈ ZN × Z.

If the point values {u(xκ)} of the function u are given and {u(xκ)} ∈ L2(ZN × Z),
then the discrete Fourier transform of u is defined by

(3.10) ũ(ζ) = hθht

∑

κ∈ZN×Z

u(xκ)e−i〈xκ,ζ〉, ζ ∈ ZN × Rht
.

The next two theorems are very essential for our work. Applying these theorems we get
an effective formulation for collocation equations on uniform meshes.

Theorem 3.2. (Poisson formula). Assume that u ∈ Hs, s
2 , s > 3

2
and h0t > 0. Then

{u(xκ)} ∈ L2(ZN× Z) and we have

ũ(ζ) =
∑

p,q∈Z

û(n+pN, η+q 2π
ht

), in L2(ZN×Rht
),(3.11a)

2πhθht

∑

κ∈ZN×Z

|u(xκ)|2 = ||ũ||2L2(ZN×Rht
) ≤ c(s, h0t) ||u||

2
s, s

2
,(3.11b)
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where (3.11b) holds for 0 < ht ≤ h0t.

Proof. Suppose that u ∈ C∞
10 . By applying the discrete Fourier transform for 1-periodic

functions and the Poisson summation formula for non-periodic functions we have

1

N

∑

k∈ZN

u(θk, t)e
−in2πθk =

∑

p∈Z

û(n+pN, t), (û(·, t) is F-coefficient)

ht

∑

l∈Z

u(θ, tl)e
−iηtl =

∑

q∈Z

û(θ, η + q 2π
ht

), (û(θ, ·) is F-transform)

which imply (3.11a) for functions in C∞
10 . By (3.7) we have

(3.12) 2πhθht

∑

κ∈ZN×Z

|u(xκ)|2 =
∑

n∈ZN

π/ht∫

−π/ht

∣∣∑

p,q

û(n+pN, η + q 2π
ht

)
∣∣2dη =: T.

We will show that (3.12) extends to Hs, s
2 , s > 3

2
by continuity. To this end we estimate

the right-hand side of (3.12) for functions u ∈ Hs, s
2 . For s > 3

2 , h0t > 0 there is a
positive number c(s, h0t) such that for all (n, η) ∈ ZN×Rht

, 0 < ht ≤ h0t holds

∑

(p,q)6=(0,0)

(
|n+pN |+ |η + q 2π

ht
|
1
2

)−2s
≤ c(s, h0t).

By this estimate we obtain T ≤ ||u||20,0 + c(s, h0t)T1 where

T1 =
∑

n∈ZN

∫

Rht

∑

(p,q)6=(0,0)

(|n+pN | + |η + q 2π
ht
|
1
2 )2s|û(n+pN, η + q 2π

ht
)|2dη ≤ c ||u||2s, s

2
.

Thus we have proved for u ∈ Hs, s
2 , 0 < ht ≤ h0t, s >

3
2

(3.13)
∑

n∈ZN

π/ht∫

−π/ht

∣∣∣
∑

p,q

û(n+pN, η + q 2π
ht

)
∣∣∣
2

dη ≤ c(s, h0t) ||u||2s, s
2
.

Next we show that {u(xκ)} ∈ L2(ZN × Z) for u ∈ Hs, s
2 , s > 3

2 . Take a sequence

{un} ∈ C∞
10 such that {un} converges to u inHs, s

2 . Applying (3.12), (3.13) to un−um we
find that {un(xκ)} is a Cauchy sequence in L2(ZN×Z) and has a limit {uκ} ∈ L2(ZN×Z).
By the Sobolev embedding follows u(xκ) = uκ, hence {u(xκ)} ∈ L2(ZN × Z). By a
limiting process we finally obtain that (3.11a), (3.11b) are valid for u ∈ Hs, s

2 , s > 3
2 . �

Theorem 3.2 does not give accurate results when applied to functions A∗uh, uh ∈
Sdθ

hθ
×Sdt

ht
. There holds Sdθ

hθ
×Sdt

ht
⊂ Hs, s

2 , s < min{dθ + 1
2
, 2dt + 1}, and Theorem 3.2

implies that A∗uh is continuous and the discrete Fourier transform Ã∗uh is defined if
β < min{dθ − 1, 2dt −

1
2}. We can replace this condition with the following

(3.14a) β < min{dθ, 2dt}.
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In addition, we assume that one of the following conditions is satisfied

Integers dθ, dt are odd,(3.14b)

dθ+dt is odd, |β|<2, β≥−dθ−1, the principal symbol is as in (2.3),(3.14c)

Integers dθ, dt are even, (2.3) holds with β = −1.(3.14d)

We define N2
∗={(p, q)∈N2

0| (p, q) 6=(0, 0)}. Assuming λ≥1, µ≥1, ν< min{λ−1, 2(µ−1)},
one easily verifies

(3.15)
∑

(p,q)∈N2
∗

(p+ q
1
2 )ν(1 + p)−λ(1 + q)−µ <∞.

Theorem 3.3. Assume (3.14) and let uh{cκ} ∈ Sdθ

hθ
×Sdt

ht
. Then A∗uh is continuous,

the discrete Fourier transform Ã∗uh is defined and we have

(3.16) Ã∗uh = 1
hθht

c̃ Ã∗ψd
h.

Proof. From (3.3) we deduce

(3.17) ûh(ζ) = 1
hθht

c̃(ζ) ψ̂d
h(ζ), ζ ∈ Z × R.

Observe that c̃ is a (N, 2π
ht

)-periodic function and ûh ∈ L2(Z × R). Introducing ζp,q =

ζ + (pN, q 2π
ht

), p, q ∈ Z we have

(3.18) A∗uh(x) =
1

2πhθht

∑

p,q

∫

ZN×Rht

a∗(ζp,q)ψ̂d
h(ζp,q)c̃(ζ)e

i〈x,ζp,q〉dζ.

For fixed N, ht there holds

(3.19) |a∗(ζp,q)ψ̂d
h(ζp,q)| ≤ c (1 + |p| + |q|

1
2 )β(1 + |p|)−dθ−1(1 + |q|)−dt−1

for ζ ∈ ZN × Rht
. The continuity of A∗uh(x) follows by using (3.15), the continuity

and uniform boundedness of the functions ei〈x,ζp,q〉 and the fact that the L2(ZN ×Rht
)-

function c̃(ζ) is absolutely integrable over ZN×Rht
. Introducing the temporary notation

ac
∗(ζ) =

∑

p,q

a∗(ζp,q)(−1)κp,q

[ n

n+pN

]dθ+1[ η

η+q 2π
ht

]dt+1

ψ̂d
h(ζ)

we have for the collocation points x = xκ

(3.20) A∗uh(xκ) =
1

2πhθht

∫

ZN×Rht

ac
∗(ζ)c̃(ζ)e

i〈xκ,ζ〉dζ.

By this formula the values A∗uh(xκ) are the Fourier coefficients of the L2(ZN × Rht
)–

function 1
2πhθht

ac
∗ c̃. Therefore {A∗uh(xκ)} ∈ L2(ZN×Z) and Ã∗uh is well-defined. But

using the definition (3.10) for Ã∗uh and (3.9) we obtain

(3.21) A∗uh(xκ) =
1

2π

∫

ZN×Rht

Ã∗uh(ζ)ei〈xκ,ζ〉dζ.
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Since {ei〈xκ,ζ〉} is a complete basis of L2(ZN×Rht
), (3.20), (3.21) imply Ã∗uh = 1

hθht
ac
∗ c̃.

Finally, choosing uh = ψd
h we get Ã∗ψ

d
h = ac

∗ which yields (3.16). �

To obtain solvability of the problem (3.2) we analyze the function Ã∗ψd
h which can

be considered as an approximation of Â∗ψd
h. Henceforth c, c0 denote general posi-

tive constants which are independent of the discretization parameters. Observe that

c0 hθht ≤ ψ̂d
h(ζ) ≤ c hθht , ζ ∈ ZN×Rht

. Furthermore, there holds for all ζ ∈ ZN×Rht

c0 hθht |ζ|
β ≤ |Â∗ψd

h(ζ)| ≤ c hθht |ζ|
β ,(3.22a)

Re Â∗ψ
d
h(ζ) ≥ c0 hθht |ζ|

β ,(3.22b)

where |ζ| = |n| + |η|1/2 with |n| = max{1, |n|}. Under some additional assumptions we

show that the properties (3.22) remain valid when Â∗ψ
d
h is replaced by Ã∗ψ

d
h . Moreover,

we estimate the approximation error. We impose the condition

(3.23) γ2/π ≤ ν := h2
θh

−1
t ≤ ν1 <∞,

where γ is the parameter appearing in (2.2). As it was pointed out in Remark 2.1 the
constant γ can be taken arbitrary small for the classical parabolic boundary integral
operators. Having the condition (3.23) we can use the common parameter h = hθ

and have then ht ∼ h2. This condition is well-known in connection of the parabolic
problems.

Lemma 3.4. Assume (3.14) and (3.23). Abbreviating d̄ = min{dθ, 2dt + 1} we have
for all ζ ∈ ZN×Rht

,

c0 h
3|ζ|β ≤ |Ã∗ψ

d
h(ζ)| ≤ c h3|ζ|β ,(3.24a)

Re Ã∗ψd
h(ζ) ≥ c0 h

3|ζ|β,(3.24b)

|Ã∗ψd
h(ζ) − Â∗ψd

h(ζ)| ≤ c
[
h|ζ|

]d̄+1−β
|Ã∗ψd

h(ζ)|.(3.24c)

Proof. We have

Ã∗ψd
h(ζ) = Â∗ψd

h(ζ) +
∑

(p,q)6=(0,0)

a∗(ζp,q)(−1)κp,q

[
n

n+pN

]dθ+1[
η

η+q 2π
ht

]dt+1

ψ̂d
h(ζ).

We assume that (3.14b) is valid. The proof for the cases (3.14c) and (3.14d) is given
in the appendix. If both dθ and dt are odd, then (−1)κp,q = +1, and we obtain the
stability estimate (or “ellipticity of the numerical symbol”) (3.24b) by (2.1e),

Re Ã∗ψd
h(ζ) ≥ Re Â∗ψd

h(ζ) ≥ c0 hθht|ζ|
β .

In order to prove the consistency estimate (3.24c), we consider the discretization error
writing

(3.25) Ã∗ψd
h(ζ) − Â∗ψd

h(ζ) = T (ζ)ψ̂d
h(ζ),
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where T = T1 + T2 + T3 with

T1 =
∑

p6=0

a∗(ζp,0)(−1)κp,0

[
n

n+pN

]dθ+1

, T2 =
∑

q 6=0

a∗(ζ0,q)(−1)κ0,q

[
η

η+q 2π
ht

]dt+1

T3 =
∑

p,q 6=0

a∗(ζp,q)(−1)κp,q

[
n

n+pN

]dθ+1[
η

η+q 2π
ht

]dt+1

.

Assume n 6= 0. Using (2.1d), (2.2) we obtain for all (p, q) 6= (0, 0)

|a∗(ζp,q)| = |a(ζp,q)| = Nβ |a(p+ n
N
, ν(q2π + htη))|

≤ c Nβ
(
|p+ n

N
| + |ν(q2π + htη)|

1
2

)β
≤ c Nβ

(
|p| + |q|

1
2

)β
,

since |p+ n
N
|+ |ν(q2π + htη)|

1
2 ≥ γ if ν ≥ γ2/π. Therefore by (3.15), dθ > β, 2dt > β

|T3| ≤ c Nβ | n
N
|dθ+1|htη|

dt+1
∞∑

p,q=1

(p+ q
1
2 )β 1

pdθ+1

1

qdt+1

≤ ch−β |hn|dθ+1|h2η|dt+1.

The other terms have the bounds |T1| ≤ ch−β |hn|dθ+1, |T2| ≤ ch−β |h2η|dt+1. These

upper bounds remain valid also for n = 0 and we obtain |T | ≤ ch−β
[
h|ζ|

]d̄+1
which

yields

(3.26) |Ã∗ψ
d
h(ζ) − Â∗ψ

d
h(ζ)| ≤ c

[
h|ζ|

]d̄+1−β
|Â∗ψ

d
h(ζ)|.

Since d̄+1−β ≥ 1 and h|ζ| is uniformly bounded in ZN×Rht
, (3.26) implies

(3.27) |Ã∗ψ
d
h(ζ)| ≤ c |Â∗ψ

d
h(ζ)|.

Using (3.27), (3.24b), (3.22a) we get (3.24a) and (3.24c). �

We assume that for the function f there holds f = {f(xκ)} ∈ L2(ZN × Z). Then

using the representation uh = uh{cκ} for uh ∈ Sdθ

hθ
×Sdt

ht
, we can give the collocation

problem in the form

(3.28) A∗c = f,

where A∗ is defined by A∗c = {(A∗uh)(xκ)}. Observe that A∗ depends on the parame-
ters d, N and ht. It turns out that A∗ : L2(ZN× Z) → L2(ZN× Z) is an isomorphism.
In particular, the collocation problem is uniquely solvable. To prove that result, we
introduce in L2(ZN× Z) the discrete norms ||c||s, s

2 ;h, s ∈ R such that

||c||2s, s
2 ;h =

1

2π

∫

ZN×Rht

|ζ|2s|c̃(ζ)|2dζ.
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The discrete anisotropic Sobolev space H
s, s

2

h is the space L2(ZN×Z) endowed with norm
||c||s, s

2 ;h. Observe that for fixed parameters N and ht all the norms ||c||s, s
2 ;h , s ∈ R,

are equivalent. With s = 0 we have ||c||s, s
2 ;h = ||c||h. Moreover we have

(3.29) |( c | d )h| ≤ ||c||s, s
2 ;h ||d||−s,− s

2 ;h, s ∈ R.

Using these norms we can describe the mapping properties of A∗ very much analogously
with the continuous case. In addition to the whole space problem (3.2) we consider the
corresponding problem where the vanishing initial condition is taken into account. In
the case of this latter problem we assume that dt = 0 or dt = 1. We define

S̃dt

ht
= {v ∈ Sdt

ht
| supp v ⊂ [0,∞)}.

Under our assumption concerning the degree dt there holds

Sdθ

hθ
× S̃dt

ht
= {uh = uh{cκ} ∈ Sdθ

hθ
×Sdt

ht
| c ∈ L̃2(ZN× Z)} ,

where L̃2(ZN× Z) = {c ∈ L2(ZN× Z)| ck,l = 0, k, l ∈ Z, l ≤ 0}. We set

H̃
s, s

2

h = {c ∈ H
s, s

2

h | c ∈ L̃2(ZN× Z)}.

The half space problem with the vanishing initial condition is given by: for f = A∗u, u ∈
H̃s, s

2 find uh ∈ Sdθ

hθ
× S̃dt

ht
such that

(3.30) A∗uh(xκ) = f(xκ), κ ∈ ZN × N.

Theorem 3.5. Assume (3.14) and (3.23). If u ∈ Hs, s
2 , s > β+ 3

2
, then the collocation

problem (3.2) has a unique solution. If, in addition, u ∈ H̃s, s
2 and dt = 0 or dt = 1, then

the problem (3.30) is uniquely solvable and the solutions of (3.2) and (3.30) coincide.

Proof. Consider the problem (3.2). We show that the operator A∗ : H
s, s

2

h → H
s−β, 12 (s−β)

h

is an isomorphism. First we prove the continuity. We have

(3.31) Ã∗c = Ã∗uh = 1
hθht

c̃ Ã∗ψd
h.

By (3.24a), (3.31) we get the required continuity,

||A∗c||
2
s−β, 12 (s−β);h ≤ c

∫

ZN×Rht

|ζ|2(s−β)|Ã∗uh(ζ)|2dζ

≤ c

∫

ZN×Rht

|ζ|2s|c̃(ζ)|2dζ ≤ c ||c||2s, s
2 ;h.

Now, the equation (3.28) is equivalent with the problem: find c ∈ H
α, α

2

h such that

(3.32) (A∗c | d )h = ( f | d )h, d ∈ H
α, α

2

h .

Since A∗ : H
α, α

2

h → H
−α,−α

2

h is continuous, the left-hand side of (3.32) defines a bounded

sesquilinear form in H
α, α

2

h ×H
α, α

2

h . Moreover, by (3.7), (3.31),

(A∗c | c)h = 1
2π

( Ã∗c | c̃ )ZN×Rht
=

1

2πhθht

∫

ZN×Rht

Ã∗ψd
h(ζ)|c̃(ζ)|2dζ.
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Using (3.24b) we get

(3.33) Re (A∗c | c )h ≥ c0

∫

ZN×Rht

|ζ|β |c̃(ζ)|2dζ ≥ c0 ||c||2α, α
2 ;h.

The unique solvability of (3.32) follows from the theorem of Lax and Milgram. More-

over, A∗ : H
α, α

2

h → H
−α,−α

2

h is an isomorphism such that ||A−1
∗ f ||α, α

2 ;h = ||c||α, α
2 ;h ≤

c−1
0 ||f ||−α,−α

2 ;h. This proves the assertion for the case of (3.2). If u ∈ H̃s, s
2 we have

by the Volterra property that f ∈ H̃
−α,−α

2

h . The problem (3.30) is equivalent with the

equation (3.28) such that c ∈ H̃
α, α

2

h . By the Volterra property of A∗ and the continuity

of A∗uh it follows that A∗ maps H̃
s, s

2

h into the space H̃
s−β, 12 (s−β)

h . Using the formu-

lation (3.32) in the subspace H̃
−α,−α

2

h we obtain the unique solution as in the previous
case. But this solution satisfies also the equation (3.32) and therefore coincides with
the whole-space solution. �

Remark 3.1. In fact we have an explicit formula for the Fourier coefficients of the col-
location solution and it will be used in the next section. By Theorem 3.2 and Theorem
3.3 the collocation problem is equivalent with the equation

(3.34) Ã∗uh = f̃ , in ZN×Rht
.

By (3.16) this becomes

(3.35)
1

hθht
c̃ Ã∗ψd

h = f̃ .

By Lemma 3.4 the function (Ã∗ψd
h)−1 is well–defined and (Ã∗ψd

h)−1 ∈ L∞(ZN×Rht
).

Since f̃ ∈ L2(ZN×Rht
) equation (3.35) has unique solution c̃ ∈ L2(ZN×Rht

),

(3.36) c̃ = hθht (Ã∗ψd
h)−1f̃ .

Using (3.17) we obtain in ZN×Rht

(3.37) ûh = ψ̂d
h (Ã∗ψd

h)−1f̃ .

The values of ûh for ζ /∈ ZN×Rht
can be determined by using the recurrence relation

(3.4) or directly from (3.37) when the discrete Fourier transforms on the right-hand side
are defined in Z × R by (N, 2π

ht
)-periodic extension.

Remark 3.2. In the case of whole space problem the Volterra property of the operator
is not used. Our method can be applied also to elliptic problems.

4. Convergence.

Here we prove convergence results for the collocation starting with the whole space
problem

(4.1) A∗uh(xκ) = A∗u(xκ), κ ∈ ZN×Z.
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Theorem 4.1. Assume the conditions of Theorem 3.5 . If u ∈ Hs, s
2 , s > β + 3

2 , then

the collocation solution uh ∈ Sdθ

hθ
×Sdt

ht
satisfies

(4.2) ||u− uh||t, t
2
≤ chmin{s−t, d̄+1−t}||u||

s,
s
2
,

where t ≤ s, β ≤ t < d+ 1
2 , d = min{dθ, 2dt + 1

2}, d̄ = min{dθ, 2dt + 1}.

Proof. It suffices to estimate the following three terms

T1 =

∫

ZN×Rht

|ζ|2t|û(ζ) − ûh(ζ)|2dζ,

T2 =

∫

(ZN×Rht
)c

|ζ|2t|ûh(ζ)|2dζ, T3 =

∫

(ZN×Rht
)c

|ζ|2t|û(ζ)|2dζ,

where (ZN× Rht
)c = (Z × R) \ (ZN × Rht

). For the last term one easily obtains

(4.3) T3 ≤ ch2(s−t)||u||2
s,

s
2
, t ≤ s.

Using formula (3.37) for ûh we get in ZN× Rht

û− ûh =
(Ã∗ψd

h − Â∗ψd
h) û

Ã∗ψd
h

−
ψ̂d

h (Ã∗u− Â∗u)

Ã∗ψd
h

,

which yields by Lemma 3.4 for ζ ∈ ZN× Rht

(4.4a) |û(ζ) − ûh(ζ)| ≤ c
[
h|ζ|

]d̄+1−β
|û(ζ)| + c |ζ|−β|Ã∗u(ζ) − Â∗u(ζ)|,

(4.4b) |ûh(ζ)| ≤ c |û(ζ)| + c |ζ|−β |Ã∗u(ζ) − Â∗u(ζ)|.

Thus we obtain T1 ≤ c(T11 + T12), where

T11 =

∫

ZN×Rht

|ζ|2t
[
h|ζ|

]2(d̄+1−β)
|û(ζ)|2 dζ,

T12 =

∫

ZN×Rht

|ζ|2(t−β)|Ã∗u(ζ) − Â∗u(ζ)|
2 dζ.

For T11 we have

T11 = h2(s−t)

∫

ZN×Rht

[
h|ζ|

]2(d̄+1−β−(s−t))
|ζ|2s|û(ζ)|2dζ,(4.5)

≤ c h2(s−t)||u||2s, s
2
, s− t ≤ d̄+ 1 − β.

For ζ = (n, η), ζ ′ = (n′, η′) we denote ζ ′ ∼ ζ if n′ = n + pN, η′ = η + q 2π
ht

. By using

(2.2) we can conclude

|a∗(ζ
′)| ≤ c |ζ′|β, for all ζ ′ ∼ ζ, ζ ′ 6= ζ, ζ ∈ ZN× Rht

.
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Thus we obtain

(4.6) |Ã∗u(ζ) − Â∗u(ζ)|
2 =

∣∣ ∑

ζ′∼ζ

ζ′ 6=ζ

a∗(ζ
′)û(ζ ′)

∣∣2 ≤ c
∑

ζ′∼ζ

ζ′ 6=ζ

|ζ ′|2(β−s)
∑

ζ′∼ζ

ζ′ 6=ζ

|ζ′|2s|û(ζ ′)|2.

Moreover,

c0 h
−1(|p| + |q|

1
2 ) ≤ |ζ ′| ≤ c h−1(|p| + |q|

1
2 )

and we get for s− β > 3
2 ,

(4.7)
∑

ζ′∼ζ

ζ′ 6=ζ

|ζ′|2(β−s) ≤ c h2(s−β)
∑

(p,q)6=(0,0)

(|p| + |q|
1
2 )2(β−s) ≤ c h2(s−β).

From (4.6), (4.7) it follows

(4.8) |Ã∗u(ζ) − Â∗u(ζ)|
2 ≤ c h2(s−β)

∑

ζ′∼ζ

ζ′ 6=ζ

|ζ′|2s|û(ζ ′)|2.

Using |ζ|2(t−β) ≤ c h2(β−t) for ζ ∈ ZN × Rht
, t ≥ β we estimate

T12 ≤ c h2(β−t)

∫

ZN×Rht

|Ã∗u(ζ) − Â∗u(ζ)|
2dζ(4.9)

≤ c h2(s−t)

∫

ZN×Rht

∑

ζ′∼ζ

ζ′ 6=ζ

|ζ′|2s|û(ζ ′)|2dζ

≤ c h2(s−t)||u||2s, s
2
, t ≥ β, s > β + 3

2 .

For T2 we recall the recurrence relations (3.4) for the Fourier coefficients of spline func-

tions uh ∈ Sdθ

hθ
×Sdt

ht
and obtain

(4.10) |ûh(ζ ′)| ≤ c
[
h|ζ|

]d̄+1
(1 + |p|)−(dθ+1)(1 + |q|)−(dt+1)|ûh(ζ)|.

Applying (4.10), (3.15) we get for t < d+ 1
2

T2 =

∫

ZN×Rht

∑

ζ′∼ζ

ζ′ 6=ζ

|ζ′|2t|ûh(ζ ′)|2dζ

≤ c h−2t

∫

ZN×Rht

[
h|ζ|

]2(d̄+1)
∑

(p,q)∈N2
∗

(p+ q
1
2 )2t(1 + p)−2(dθ+1)(1 + q)−2(dt+1)|ûh(ζ)|2dζ

≤ c h2(d̄+1−t)

∫

ZN×Rht

|ζ|2(d̄+1)|ûh(ζ)|2dζ.

For further estimation of T2 we use (4.4b), (3.24c) to get T2 ≤ c(T21 + T22), where

T21 = h2(d̄+1−t)

∫

ZN×Rht

|ζ|2(d̄+1)|û(ζ)|2dζ(4.11)

= h2(s−t)

∫

ZN×Rht

[
h|ζ|

]2(d̄+1−s)
|ζ|2s|û(ζ)|2dζ

≤ c h2(s−t)||u||2s, s
2
, s ≤ d̄+ 1.
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For the other term we obtain by (4.8) for s− β > 3
2 , β ≤ d̄+ 1,

T22 = h2(d̄+1−t)

∫

ZN×Rht

|ζ|2(d̄+1−β)|Ã∗u(ζ) − Â∗u(ζ)|
2dζ(4.12)

≤ c h2(s−t)

∫

ZN×Rht

[
h|ζ|

]2(d̄+1−β)
∑

ζ′∼ζ

ζ′ 6=ζ

|ζ ′|2s|û(ζ ′)|2dζ

≤ c h2(s−t)

∫

ZN×Rht

∑

ζ′∼ζ

ζ′ 6=ζ

|ζ ′|2s|û(ζ ′)|2dζ

≤ c h2(s−t)||u||2s, s
2
.

Putting the estimates (4.3), (4.5), (4.9), (4.11) and (4.12) together we find the error
estimate (4.2). �

Remark 4.1. The constant c in the error estimate (4.2) depends on the operator A∗.
More precisely, it depends on the constants c0, c1 and γ, β of the estimates (2.1), (2.2).
It will be important, for instance in localization arguments for operators with variable
coefficients, that it depends only on these constants and not otherwise on A∗.

Next we discuss the collocation problem on the finite interval [0, T ]. This problem is

given by: for u ∈ H̃s, s
2 (R2

T ) find uh ∈ Sdθ

hθ
×S̃dt

ht
[0, T ] such that

(4.13) Luh(xκ) = Lu(xκ), κ ∈ ZN× {1, · · · ,M}.

Here M ∈ N, ht = T
M

. In order to guarantee that the point values Luh(xκ) are defined
we impose in addition to (3.14) the condition

(4.14) β < d+ δ − 1.

Observe that in the practical cases where δ = 1, (4.14) is valid already by (3.14). In
the following proof we will apply the decomposition L = A + B = A∗ + B∗. One can

easily verify that A−A∗ defines a bounded operator A−A∗ : H̃s, s
2 → H̃s−β+1, 12 (s−β+1).

Since 0 < δ ≤ 1 the operator B∗ = B +A− A∗ preserves the smoothing property of B

such that B∗ : H̃s, s
2 (R2

T ) → H̃s−β+δ, s−β+δ
2 (R2

T ) is bounded. Now the condition (4.14)
implies the continuity of the functions Buh, B∗uh.

Theorem 4.2. Assume (2.1), (3.14), (3.23), (4.14) and that dt = 0 or dt = 1. If

u ∈ H̃s, s
2 (R2

T ), s > β + 3
2
, then the problem (4.13) has a unique solution for sufficiently

small h, and we have

(4.15) ||u− uh||t, t
2 ;T ≤ c hmin{s−t, d̄+1−t}||u||s, s

2 ;T ,

where t ≤ s, β ≤ t < d+ 1
2 .

Proof. We look first the case of the operator A∗ where (4.13) reads

(4.16) A∗uh(xκ) = A∗u(xκ), κ ∈ ZN × {1, · · · ,M}.

For u ∈ H̃s, s
2 (R2

T ) let U ∈ H̃s, s
2 be any extension of u such that u = U |Rθ×(−∞,T ). By

Theorem 3.5 there exists a unique solution Uh ∈ Sdθ

hθ
×S̃dt

ht
of the problem

(4.17) A∗Uh(xκ) = A∗U(xκ), κ ∈ ZN × N.



PARABOLIC BOUNDARY INTEGRAL EQUATIONS 17

By Theorem 3.5, Uh is also solution of the corresponding whole space problem. Putting
uh = Uh|Rθ×(−∞,T ) and using the Volterra property of A∗ we find that uh is a solution
of (4.16). Applying Theorem 4.1 we get

||u− uh||t, t
2 ;T ≤ ||U − Uh||t, t

2
≤ c hs−t||U ||s, s

2

which yields

(4.18) ||u− uh||t, t
2 ;T ≤ c hs−t inf

U|Rθ×(−∞,T )=u

||U ||s, s
2

= c hs−t||u||s, s
2 ;T

for β ≤ t < d+ 1
2 , β + 3

2 < s ≤ d̄+ 1. If u = 0, it follows from (4.18) that uh = 0. This
implies the existence of a unique solution for (4.16) since it reduces to finite system of
equations given by a square matrix. Consider now the general case L = A+B = A∗+B∗.
Assume that uh is a solution of (4.13). Introducing w := u+A−1

∗ B∗(u− uh) we find

(4.19) A∗uh(xκ) = A∗w(xκ), κ ∈ ZN× {1, · · · ,M}.

Moreover
w − uh = (I +A−1

∗ B∗)(u− uh) = A−1
∗ L(u− uh)

which yields
u− uh = (A−1

∗ L)−1(w − uh) = (L−1A∗)(w − uh).

By the mapping properties of L and A∗ we obtain

(4.20) ||u− uh||t, t
2 ;T ≤ c ||w − uh||t, t

2 ;T .

Write w = u+ v, v = A−1
∗ B∗(u− uh) and let u0

h, vh ∈ Sdθ

hθ
×S̃dt

ht
[0, T ] be the collocation

solutions such that

A∗u
0
h(xκ) = A∗u(xκ), κ ∈ ZN × {1, · · · ,M},

A∗vh(xκ) = A∗v(xκ), κ ∈ ZN × {1, · · · ,M}.

Since u0
h + vh is a collocation solution of w on R2

T with the operator A∗, the unique
solvability of (4.19) implies uh = u0

h + vh. There holds w − uh = u − u0
h + v − vh and

by (4.18) we get

||w − uh||t, t
2 ;T ≤ ||u− u0

h||t, t
2 ;T + ||v − vh||t, t

2 ;T(4.21)

≤ chs−t||u||s, s
2 ;T + ||v − vh||t, t

2 ;T .

Putting σ = min{d̄ + 1 − t, δ} and ρ = min{d̄ + 1, t + δ} we obtain for the values
β ≤ t < d+ 1

2
, β + 3

2
< s ≤ d̄+ 1

||v − vh||t, t
2 ;T ≤ c hσ||A−1

∗ B∗(u− uh)||ρ, ρ
2 ;T(4.22)

≤ c hσ||u− uh||t, t
2 ;T

if additionally t + δ > β + 3
2 . Taking 0 < h ≤ h0 small enough we obtain from (4.20–

22) the required estimate. Thus we proved (4.15) under the restriction t > β + 3
2
− δ.
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Assume β ≤ t ≤ β + 3
2 − δ. By (4.14) we have β + 3

2 < d+ 1
2 + δ, and we can choose τ

such that β + 3
2
< τ < d+ 1

2
+ δ, τ ≤ s. This time we estimate

||v − vh||t, t
2 ;T ≤ c hτ−t||v||τ, τ

2 ;T ≤ c hτ−t||u− uh||τ−δ, τ−δ
2 ;T .

Since β + 3
2 − δ < τ − δ < d+ 1

2 we can use the already obtained result (4.15) to have

(4.23) ||v − vh||t, t
2 ;T ≤ c hs−t+δ||u||s, s

2 ;T ≤ c hs−t||u||s, s
2 ;T .

Combining (4.21), (4.23) we get (4.15) also for β ≤ t ≤ β + 3
2 − δ. The existence of the

unique collocation solution follows by the same argument as in the case of the operator
A∗. �

Remark 4.2. In practical applications only choices with low order splines are of interest.
To illustrate our results consider some examples. For the single layer heat operator
(β = −1) we can choose dθ ≥ 0, dt = 0, 1. With piecewise constants we obtain linear
convergence for the L2-norm, whereas dθ = 1, dt = 0 gives quadratic convergence rate.
Also the choice dθ = 3, dt = 1 might be of interest, since it yields the rate O(h4)
(assuming sufficient regularity on the solution). For the hypersingular heat operator
(β = 1) we may use dθ ≥ 2, dt = 1. With dθ = 3 we get the convergence rate O(h3) for

the L2 norm and the H1,
1
2 norm.

Remark 4.3. As in the case of the elliptic problems, we obtain improved convergence

results for Ht,
t
2 norms with t < β when using splines of even degree. The highest

convergence rates for the single layer heat operator are obtained in the H−2,−1 norm,
with dθ = dt = 0: O(h3) and with dθ = 2, dt = 1: O(h5). For the hypersingular
operator, we obtain with dθ = 2, dt = 1: O(h3) in the L2 norm.

More generally, we have the following result.

Theorem 4.3. Assume the conditions of Theorem 4.2 with 0 < δ ≤ 1 in (2.1g) and
that dθ is even. Then for s > β + 3

2
, t < d+ 1

2
, t ≤ s, we have for sufficiently small h,

(4.24) ||u− uh||t, t
2 ;T ≤ c hα||u||s, s

2 ;T ,

with α = min{s− t, s−β, d̄+1−t, d̃+2−β, d̄+1−β+δ} , where d̃ = min{dθ, 2dt}.

Proof. We first note that the perturbation operator B (or equivalently B∗) affects the

improved convergence result (4.24) only if δ < 1 since we have d̃ ≤ d̄.
The proof will now be done in three steps. The main observation is that for even dθ,
the consistency estimate (3.24c) of Lemma 3.4 can be improved:

(4.25) |Ã∗ψ
d
h(ζ) − Â∗ψ

d
h(ζ)| ≤ c

[
h|ζ|

]d̃+2−β
|Ã∗ψ

d
h(ζ)|.

The proof of (4.25) will be the first step.
We consider the function T (ζ) defined in (3.25) in the proof of Lemma 3.4:

T (ζ) =
∑

(p,q)6=(0,0)

a∗(ζp,q)(−1)κp,q

[
n

n+pN

]dθ+1[
η

η+q 2π
ht

]dt+1

.
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It suffices to consider the case n 6= 0. Defining ξ = n
N ∈ [−1

2 ,
1
2 ] and τ = htη ∈ [−π, π]

and using the homogeneity of a, we have then T (ζ) = NβF (ξ, τ) with

F (ξ, τ) =
∑

(p,q)6=(0,0)

a(ξ+p, ν(τ+2πq))(−1)κp,q

[
ξ

ξ+p

]dθ+1[
τ

τ+2πq

]dt+1

.

By (3.15), this series converges together with all its derivatives and therefore F is a C∞

function on [−1
2 ,

1
2 ] × [−π, π]. Since (−1)κp,q = (−1)κ−p,q and a(−x, y) = a(x, y), we

have

F (−ξ, τ) =
∑

(p,q)6=(0,0)

a(−ξ−p, ν(τ+2πq))(−1)κp,q

[
−ξ

−ξ−p

]dθ+1[
τ

τ+2πq

]dt+1

= F (ξ, τ) .

Therefore there exists a function G ∈ C∞([−1
4
, 1

4
]×[−π, π]) such that F (ξ, τ) = G(ξ2, τ).

Using the fact that h|ζ| = |ξ|+ (ν|τ |)
1
2 , we see that the estimate (3.24c) means

(4.26) |F (ξ, τ)| ≤ c (ξ2 + |τ |)(d̄+1)/2 .

Let G(x, y) = Pd(x, y) +O((x2 + y2)(d+1)/2) be the Taylor expansion of G at the origin
where

Pd(x, y) =
d∑

k=0

αkx
kyd−k

is the lowest-order non-zero term. From the estimate (4.26) follows that

d ≥ d̄+1
2

= min{dθ+1
2
, dt+1} .

Since d is an integer and dθ is even, this implies immediately

d ≥ min{dθ+2
2 , dt+1} = d̃

2 + 1 .

Thus (4.26) can be improved to

(4.27) |F (ξ, τ)| ≤ c (ξ2 + |τ |)(d̃+2)/2 ,

hence

|T (ζ)| ≤ c h−β
[
h|ζ|

]d̃+2
,

and thus the estimate (4.25) is shown.
As a second step, we reconsider the proof of Theorem 4.1. This means that we want

to show the estimate (4.24) for the case where the perturbation B∗ is absent. Then we
have to look at the error for the finite interval R2

T .
The following estimates from the proof of Theorem 4.1 are already compatible with
(4.24):

T12 ≤ c h2 min{s−t, s−β} ||u||2
s,

s
2
;

T21 ≤ c h2 min{s−t, d̄+1−t} ||u||2
s,

s
2
;

T22 + T3 ≤ c h2(s−t) ||u||2
s,

s
2
.
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The only term that needs improvement is T11. Using (4.25), we can improve the estimate
(4.4a) to

(4.28) |û(ζ) − ûh(ζ)| ≤ c
[
h|ζ|

]d̃+2−β
|û(ζ)| + c |ζ|−β|Ã∗u(ζ) − Â∗u(ζ)| .

We change therefore the definition of T11 to

T11 =

∫

ZN×Rht

|ζ|2t
[
h|ζ|

]2(d̃+2−β)
|û(ζ)|2 dζ,

and we see that now

T11 ≤ c h2(s−t)||u||2s, s
2
, for s− t ≤ d̃+ 2 − β.

This completes the proof of (4.24) for this case. As for the finite interval R2
T , we obtain

with exactly the same argument as in (4.18), that (4.24) is valid, even for δ = 1 which
corresponds to the case where the perturbation is not present.

In the final step, we incorporate the perturbation B∗.
Using the notations of the proof of Theorem 4.2, we obtain, as we have just shown,

(4.29) ‖u− u0
h‖t, t

2 ;T ≤ chmin{s−t,s−β,d̄+1−t,d̃+2−β}‖u‖s, s
2 ;T ,

and taking t = β, s = d̄+ 1 in (4.23),

(4.30) ‖v − vh||β, β
2 ;T ≤ chd̄+1+δ−β‖u‖

d̄+1, d̄+1
2 ;T

.

The assertion (4.24) follows now by combining (4.20), (4.21), (4.29) and (4.30). �

Let us now consider the estimate (4.24) in more detail. The first observation is
that if the parameters t and s both lie in the range allowed by Theorem 4.2, namely
β ≤ t < d+ 1

2
, β+ 3

2
< s ≤ d̄+1, then (4.24) coincides with (4.15). Further, in order to

obtain a higher convergence rate than allowed by (4.25), one has to take values t and s
satisfying t < β and s > d̄+ 1 simultaneously. This implies that an improved estimate
occurs if and only if there holds

(4.31) d̄+ 1 − β < d̃+ 2 − β, i. e. 0 < d̃− d̄+ 1 .

On the other hand, we have d̃ ≤ d̄, and thus (4.31) becomes 0 < d̃ − d̄ + 1 ≤ 1. But

since d̃ and d̄ are integers, (4.31) holds if and only if d̃ = d̄. As we consider only the
two values dt = 0 and dt = 1, all the cases where an improvement occurs are contained
in the following list:

(4.32) dθ = 0, dt = 0 ; dθ = 0, dt = 1 ; dθ = 2, dt = 1 .

Finally, we can write the improved estimates in a symmetric form; we simultaneously
take t = β − τ and s = d̄+ 1 + τ , τ > 0.

Now Theorem 4.3 takes the following equivalent but more explicit form.
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Theorem 4.4. Assume the conditions of Theorem 4.2 with 0 < δ ≤ 1 in (2.1g) and
that dθ is even. Then in addition to the optimal order result (4.15), there holds the
suboptimal estimate

(4.33) ||u− uh||β−τ, β−τ
2 ;T ≤ c hd̄+1+τ−β ||u||

d̄+1+τ, d̄+1+τ
2 ;T

,

if 0 < τ ≤ δ and (dθ, dt) satisfies one of the conditions (4.32). The highest convergence
rate is d̄+ 1 − β + δ. The order of the improvement is 1.

Remark 4.4. If the order β of the operator L is positive, we obtain an improved conver-
gence with respect to the non-negative norms ||u−uh||β−τ, β−τ

2 ;T , 0 ≤ τ ≤ min{β, δ}. If

β ≤ 0, we obtain improved convergence results only for some norms of negative order.
But such results are still of interest as in the elliptic case. An application is given below.

Example 4.1. Consider the single layer heat potential which is given for x 6∈ Γ by

Φ(x, t) =

t∫

0

1
2∫

− 1
2

u(φ, t′)E(x− x(φ), t− t′) |x′(φ)| dφ dt′ .

For the notations see Example 2.1. Assume that we have determined the collocation
solution uh(φ, t), (φ, t) ∈ R2

T by using the single layer heat equation. Then we have the
approximate heat potential for 0 < t ≤ T

Φh(x, t) =

t∫

0

1
2∫

− 1
2

uh(φ, t′)E(x− x(φ), t− t′) |x′(φ)| dφ dt′ .

Applying (4.33) with β = −1, δ = 1 we get

(4.34) |Φ(x, t)− Φh(x, t)| ≤ c‖u− uh‖−2,−1;T ≤ chd̄+3‖u‖
d̄+2, d̄+2

2 ;T
, c = c(x, t) .

Thus we have the following improved rates for the heat potential

(4.35) |Φ(x, t)− Φh(x, t)| ≤ c

{
h3 , if dθ = dt = 0 or dθ = 0 and dt = 1 ,

h5 , if dθ = 2 and dt = 1 .

The maximal order of improvement is 1.
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5. Appendix. Stability: Splines of even degree.

We want to show the positivity estimate (3.24b) under the hypotheses (3.14c) or
(3.14d).

We assume first that the degree dt is even and dθ is odd. In addition, we assume
that the principal symbol has the special form (2.3) with −2 < β < 2.
In the sum

(5.1) ac
∗(ζ) =

∑

p,q

a∗(ζp,q)(−1)κp,q

[ n

n+pN

]dθ+1[ η

η+q 2π
ht

]dt+1

ψ̂d
h(ζ)

we have (−1)κp,q = (−1)q. Since both Re a∗(ξ, η) and ψ̂d
h(ξ, η) are even functions of ξ

and η, we may assume that n and η in (5.1) are positive. For the same reason, it suffices
to consider the sum

(5.2) a++
∗ (ζ) =

∑

p≥0,q≥0

a∗(ζp,q)(−1)κp,q

[ n

n+pN

]dθ+1[ η

η+q 2π
ht

]dt+1

ψ̂d
h(ζ),

If we can show that this has positive real part, then the 3 remaining sums over p ≥
0, q < 0, over p < 0, q ≥ 0, and over p < 0, q < 0 will have positive real part, too,
since they can be written as sums of the form (5.2) (with n replaced by N−n and/or η
replaced by 2π

ht
−η).

We write

a++
∗ (ζ) =

∞∑

p=0

[ n

n+pN

]dθ+1

ψ̂d
h(ζ)

∞∑

q=0

Sp,2q

with
(5.3)

Sp,2q = aβ(n+pN, η+2q 2π
ht

))
[ η

η+2q 2π
ht

]dt+1

− aβ(n+pN, η+(2q+1) 2π
ht

)
[ η

η+(2q + 1) 2π
ht

]dt+1

We shall show now that for ξ > 0 the positive function

(5.4) τ 7→ g(τ) = Re aβ(ξ, τ)
[1

τ

]dt+1

has a negative derivative for τ > 0.

According to the homogeneity assumption (2.3), we can simplify (5.4) by assuming that
α|ξ|2 = 1, and we compute then with τ = tanφ, φ ∈ (0, π

2
)

g′(τ) = Re
[ ∂
∂τ

(1+iτ)
β
2 τ−dt−1

]
= |1+iτ |

β
2 −1τ−dt−2 Re

[(
iβτ/2−(dt+1)(1+iτ)

)
eiφ( β

2 −1)
]

This can be written in the following two equivalent forms:

g′(τ)|1 + iτ |−
β
2 +1τdt+2 =

−1

cosφ

{
(dt + 1) cosφβ

2
+ β

2
sinφ sinφ(β

2
− 1)

}

=
−1

cosφ

{
(dt + 1 − β

2 ) cosφβ
2 + β

2 cosφ cosφ(β
2 − 1)

}

The first expression on the right hand side is easily seen to be negative for β ∈ [−2, 0]
and the second for β ∈ [0, 2]. Thus (5.4) is shown.
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If we set ξ = n+ pN and τ = η+ 2q 2π
ht

in (5.4), we obtain immediately that ReSp,2q =

ηdt+1(g(τ) − g(τ+ 2π
ht

)) > 0 for all p, q ≥ 0.
It remains to estimate

S0,0 = (αn2 + iη)β/2 − (αn2 + i(η + 2π
ht

))β/2
[ η

η + 2π
ht

]dt+1

= ht
−β/2

(
(ξ2 + iτ)β/2 − (ξ2 + i(τ + 2π))β/2

[ τ

τ + 2π

]dt+1)
,

where we set ξ2 = αn2ht and τ = ηht. With (3.23) we see that

(ξ2, τ) ∈ [0, α
4ν ] × [0, π] =: Q

We see that f(ξ2, τ) = ht
β/2 ReS0,0 is a continuous function on Q\{(0, 0)} and positive

there, as we have seen before. At the origin, we obtain with dt + 1 > β/2

lim inf |ξ2 + iτ |−β/2f(ξ2, τ) = lim inf |ξ2 + iτ |−β/2 Re(ξ2 + iτ)β/2 > 0.

This implies that on Q \ {(0, 0)}, f(ξ2, τ) ≥ c|ξ2 + iτ |β/2 with some c > 0. Hence

(5.5) ReS0,0 ≥ cht
−β/2|ξ2 + iτ |β/2 ≥ c0|ζ|

β.

Thus (3.24b) is shown for this case.
As a second case, we assume now that dt is odd and dθ is even. The principal symbol

has the special form (2.3) with −2 < β < 2. In addition, we have −(dθ+1) ≤ β ≤ dθ+1,
which is restrictive only if dθ = 0, or if |β| > 1. We have again the formula (5.2), but
now (−1)κp,q = (−1)p. We can therefore write

a++
∗ (ζ) =

∞∑

p=0

[ η

η+q 2π
ht

]dt+1

ψ̂d
h(ζ)

∞∑

q=0

S2p,q

where once again the terms in the second sum are differences

S2p,q = aβ(n+2pN, η+q 2π
ht

))
[ n

n+2pN

]dθ+1

− aβ(n+(2p+1)N, η+q 2π
ht

)
[ n

n+(2p+1)N

]dθ+1

.

Thus with ξ = n+ 2pN , τ = η + q 2π
ht

and g(ξ) = Re aβ(ξ, τ)ξ−dθ−1, we have

ReS2p,q = ndθ+1(g(ξ)− g(ξ +N)) .

We will finish the proof for this second case as above by showing that g is a decreasing

function. By writing σ = α|ξ|2

τ , we find

g(ξ) = Re ξ−(dθ+1)(α|ξ|2 + iτ)β/2 = α(dθ+1)/2τ (β−dθ−1)/2 Re σ−(dθ+1)/2(σ + i)β/2.

It remains therefore to show that the function

(5.6) σ 7→ h(σ) = Reσ−(dθ+1)/2(σ + i)β/2 has a negative derivative for σ > 0.



24 M. COSTABEL AND J. SARANEN

Let σ = cotφ, φ ∈ (0, π
2 ). We find

h′(σ) = σ−
dθ+3

2 |σ + i|
β
2 −1 Re

[(βσ
2

−
dθ + 1

2
(σ + i)

)
eiφ( β

2 −1)
]
.

In order to see that this is negative, we have to use a slightly different substitution
from the one used in the first case above. Thus we further introduce ψ ∈ (0, φ) by

−2ψ = φ(β
2
− 1) and δ = tanψ. We have then

0 < σδ < 1 and cosφ(β
2 − 1) =

1 − δ2

1 + δ2
, sinφ(β

2 − 1) =
−2δ

1 + δ2
.

Hence we compute

h′(σ)σ
dθ+3

2 |σ + i|−
β
2 +1 =

−1

2(1 + δ2)

{
(dθ + 1 − β)σ(1 − δ2) + 2(dθ + 1)δ

}

=
−1

2(1 + δ2)

{
(dθ + 1 − β)(σ + δ(1 − σδ)) + (dθ + 1 + β)δ

}
.

This last formulation shows clearly that h′(σ) < 0.

We have thus shown that Re ac
∗(ζ) > ReS0,0ψ̂d

h(ζ) > 0. The estimate (5.5) for ReS0,0

follows by the same argument as above in the first case.
For the third and final case we assume that (3.14d) holds, i. e. both dt and dθ

are even. In the sum (5.2), we have now (−1)κp,q = (−1)p+q . The sum is therefore
alternating in both directions, and we group the summands by four:

a++
∗ (ζ) = ψ̂d

h(ζ)
∞∑

p,q=0

S2p,2q

where we define

S2p,2q = aβ(n+2pN, η+2q
2π

ht
)
[ n

n+2pN

]dθ+1[ η

η+2q 2π
ht

]dt+1

− aβ(n+(2p+1)N, η+2q
2π

ht
)
[ n

n+(2p+1)N

]dθ+1[ η

η+2q 2π
ht

]dt+1

− aβ(n+2pN, η+(2q+1)
2π

ht
)
[ n

n+2pN

]dθ+1[ η

η+(2q+1) 2π
ht

]dt+1

+ aβ(n+(2p+1)N, η+(2q+1)
2π

ht
)
[ n

n+(2p+1)N

]dθ+1[ η

η+(2q+1) 2π
ht

]dt+1

With ξ = n+ 2pN , τ = η + 2q 2π
ht

and g(ξ, τ) = Re aβ(ξ, τ)ξ−(dθ+1)τ−(dt+1), we have

ReS2p,2q = ndθ+1ηdt+1
(
g(ξ, τ)− g(ξ+N, τ)− g(ξ, τ+

2π

ht
) + g(ξ+N, τ+

2π

ht
)
)

= ndθ+1ηdt+1

∫ ξ+N

ξ

∫ τ+ 2π
ht

τ

∂2g(ξ, τ)

∂ξ∂τ
dτ dξ .
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As above in the first two cases, we will be able to conclude the positivity of ReS2p,2q

and therefore the estimate (3.24b) for ac
∗(ζ) if we show that the mixed derivative

(5.7)
∂2

∂ξ∂τ
g(ξ, τ) is positive for ξ, τ > 0 .

We set σ = αξ2, d1 = (dθ + 1)/2, d2 = dt + 1, and γ = β/2, and we compute

h(σ, τ) : =
∂2

∂σ∂τ
σ−d1τ−d2(σ + iτ)γ

= σ−d1−1τ−d2−1(σ + iτ)γ−2

·
{
d2(d1 − γ)σ2 + d1(γ − d2)τ

2 + i
(
2d1d2 − (d1 + d2)γ + γ(γ − 1)

)
στ

}
.

We can now assume that σ = 1, and we set τ = tanφ, x = cosφ = |1 + iτ |−1. We
obtain

p : = τd2+1|1 + iτ |−γ Re h(1, τ)

= cos2φ cos(γ − 2)φ
{
d2(d1 − γ) + d1(γ − d2)τ

2
}

(5.8)

− sinφ cosφ sin(γ − 2)φ
{
2d1d2 − (d1 + d2)γ + γ(γ − 1)

}
.

Now we use the identities

cos(γ−2)φ = 2 cosφ cos(γ−1)φ− cos γφ

= (4 cos2φ−1) cos γφ− 2 cosφ cos(γ+1)φ

sinφ cosφ sin(γ−2)φ =
1

2
(− cos γφ+ cos 2φ cos(γ−2)φ)

= (4 cos4φ−3 cos2φ) cos γφ+ (−2 cos3φ+cosφ) cos(γ+1)φ

and transform (5.8) into

p = q1(x) cos γφ+ q2(x) cos(γ + 1)φ

with

q1(x) = −4γ(γ − 1)x4 + (2(d1 − d2)γ + 3γ(γ − 1))x2 + d1(d2 − γ)

q2(x) = 2γ(γ − 1)x3 + ((d2 − d1)γ − γ(γ − 1))x .

From this form of the expression p, it would not be too hard to show its positivity for
negative γ and sufficiently large d1, d2, while for positive γ one would use a different
expression involving cos(γ − 1)φ. We shall, however, concentrate now on the case at
hand, namely β = −1 and dt = 0, that is γ = −1/2 and d2 = 1, and we want to show
that p > 0 holds for all x ∈ (0, 1) and all d1 ≥ 1/2.
We have in this case

p = (q1(x) + q2(x)) cos φ
2 =:

q(x)

4
cos φ

2
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with the polynomial

q(x) = −12x4 + 6x3 + (13 − 4d1)x
2 + (2d1 − 5)x+ 6d1 .

The partial derivative of q(x) with respect to d1 is (x+ 1)(6− 4x) which is positive. It
remains to show that q(x) is positive for d1 = 1/2 in order to obtain its positivity for
all d1 ≥ 1/2.
For d1 = 1/2, we find

q(x) = −12x4 + 6x3 + 11x2 − 4x+ 3

= 6(1 + 2x)(1 − x)x2 + x2 + (2x− 1)2 + 2

which is clearly positive for all x ∈ (0, 1). This concludes the proof for the third case. �
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