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Tutorial: Acoustic scattering by a penetrable object

The scattering problem

diva(x)∇u + k(x)2u = f in Rd , Sommerfeld rad. cond. at ∞

a(x)≡ 1, k(x)≡ k ∈ C outside of a bounded domain Ω, supp f compact.

Rewritten as a perturbation problem

(∆ + k2)u = f − (divα ∇+β )u , α(x) = a(x)−1, β (x) = k(x)2−k2

The Volume Integral Equation: Convolution with the fundamental solution

u =−Gk ∗ f + divGk ∗ (α ∇u) + Gk ∗ (βu) Gk (x)=
eik |x |

4π|x | for d = 3

For any domain Ω̂ with Ω⊂ Ω̂⊂ Rd : uinc(x) :=−∫ Gk (x−y)f (y)dy

u(x)−div
∫

Ω
Gk (x−y)α(y)∇u(y)dy−

∫

Ω
Gk (x−y)β (y)u(y)dy = uinc(x) x ∈ Ω̂
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The VIE, classical: Lippmann-Schwinger equation

Situation: a(x)≡ 1⇒ α = 0

Fredholm alternative

Assumption: β ∈ L∞. Then the VIE

u(x)−
∫

Ω
Gk (x−y)β (y)u(y)dy = uinc(x)

is a classical (weakly singular) second kind Fredholm integral equation.
The Fredholm alternative holds in L2(Ω̂) and, if β is smooth, in Hs(Ω) for
any suitable s.

This is one of the standard methods for proving existence of a solution of
the scattering problem.
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The VIE, still classical

Situation: a ∈ C1(Rd )⇒ α = 0 on ∂ Ω
The operator

u 7→ divGk ∗ (α ∇u)

maps H1(Ω) boundedly to itself (and L2 to L2), but it is strongly singular
and not compact.
One can obtain a weakly singular Fredholm integral equation by partial
integration:

divGk ∗ (α ∇u)(x) =−div
∫

Ω
∇y
(
Gk (x−y)α(y)

)
u(y)dy

= ∆
∫

Ω
Gk (x−y)α(y)u(y)dy

−div
∫

Ω
Gk (x−y)(∇α)(y)u(y)dy

=−α(x)u(x)−k2
∫

Ω
Gk (x−y)α(y)u(y)dy

−div
∫

Ω
Gk (x−y)(∇α)(y)u(y)dy

Martin Costabel (Rennes) VIEs IMSE 2014, 24/07/2014 4 / 36



The VIE, still classical

Situation: a ∈ C1(Rd )⇒ α = 0 on ∂ Ω
The operator

u 7→ divGk ∗ (α ∇u)

maps H1(Ω) boundedly to itself (and L2 to L2), but it is strongly singular
and not compact.
One can obtain a weakly singular Fredholm integral equation by partial
integration:

divGk ∗ (α ∇u)(x) =−div
∫

Ω
∇y
(
Gk (x−y)α(y)

)
u(y)dy

= ∆
∫

Ω
Gk (x−y)α(y)u(y)dy

−div
∫

Ω
Gk (x−y)(∇α)(y)u(y)dy

=−α(x)u(x)−k2
∫

Ω
Gk (x−y)α(y)u(y)dy

−div
∫

Ω
Gk (x−y)(∇α)(y)u(y)dy

Martin Costabel (Rennes) VIEs IMSE 2014, 24/07/2014 4 / 36



The VIE, still classical

Situation: a ∈ C1(Rd )⇒ α = 0 on ∂ Ω
The operator

u 7→ divGk ∗ (α ∇u)

maps H1(Ω) boundedly to itself (and L2 to L2), but it is strongly singular
and not compact.
One can obtain a weakly singular Fredholm integral equation by partial
integration:

divGk ∗ (α ∇u)(x) =−div
∫

Ω
∇y
(
Gk (x−y)α(y)

)
u(y)dy

= ∆
∫

Ω
Gk (x−y)α(y)u(y)dy

−div
∫

Ω
Gk (x−y)(∇α)(y)u(y)dy

=−α(x)u(x)−k2
∫

Ω
Gk (x−y)α(y)u(y)dy

−div
∫

Ω
Gk (x−y)(∇α)(y)u(y)dy

Martin Costabel (Rennes) VIEs IMSE 2014, 24/07/2014 4 / 36



The VIE, still classical

Situation: a ∈ C1(Rd )⇒ α = 0 on ∂ Ω
The operator

u 7→ divGk ∗ (α ∇u)

maps H1(Ω) boundedly to itself (and L2 to L2), but it is strongly singular
and not compact.
One can obtain a weakly singular Fredholm integral equation by partial
integration:

divGk ∗ (α ∇u)(x) =−div
∫

Ω
∇y
(
Gk (x−y)α(y)

)
u(y)dy

= ∆
∫

Ω
Gk (x−y)α(y)u(y)dy

−div
∫

Ω
Gk (x−y)(∇α)(y)u(y)dy

=−α(x)u(x)−k2
∫

Ω
Gk (x−y)α(y)u(y)dy

−div
∫

Ω
Gk (x−y)(∇α)(y)u(y)dy

Martin Costabel (Rennes) VIEs IMSE 2014, 24/07/2014 4 / 36



The VIE, still classical

Situation: a ∈ C1(Rd )⇒ α = 0 on ∂ Ω

Fredholm alternative

Assumption: β ∈ L∞. Then the VIE

a(x)u(x)−
∫

Ω
Gk (x−y)(β (y)−k2

α)u(y)dy

+ div
∫

Ω
Gk (x−y)(∇α)(y)u(y)dy = uinc(x)

is a classical (weakly singular) second kind Fredholm integral equation
if and only if a(x) 6= 0 for all x ∈ Ω.

The Fredholm alternative then holds in L2(Ω̂) and, if α and β are smooth,
in Hs(Ω) for any suitable s.

This is one of the standard methods for proving existence of a solution of
the scattering problem [Colton-Kress 1983].
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The VIE, no longer classical

Situation: a ∈ C1(Ω̄), i.g. discontinuous across Γ = ∂ Ω.

Theorem: Fredholm alternative [??]

Assumption: β ∈ L∞. Then the VIE

u(x)−div
∫

Ω
Gk (x−y)α(y)∇u(y)dy−

∫

Ω
Gk (x−y)β (y)u(y)dy = uinc(x)

is Fredholm in H1(Ω) if and only if
1 a(x) 6= 0 for all x ∈ Ω

2 a(x) 6=−1 for all x ∈ Γ

if Γ is smooth.
If Γ is Lipschitz, then a sufficient condition is

1 and a(x) 6=− σ

1−σ
∀σ ∈ Σ,x ∈ Γ.

Here Σ is a compact subset of (0,1), the essential spectrum of the double
layer potential operator 1

2 I+ K on H1/2(Γ).
Σ = { 1

2} if Γ is smooth.
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Motivations for looking at VIEs:
Electromagnetic scattering by penetrable objects

Two motivations
1 Antennas for millimetre waves with dielectric lenses

Collaboration with colleagues in electronics (Rennes)
2 Discrete Dipole Approximation

A challenge...
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Electromagnetic scattering by a penetrable homogeneous object

For simplicity: Piecewise constant coefficients:

!-
!+

!

supp J

ε = εr in Ω = Ω−, ε = 1 in R3 \Ω = Ω+,
η = 1− εr
µ = µr in Ω, µ = 1 in R3 \Ω, ν = 1− 1

µr

Time-harmonic Maxwell equations

curlE = iωµH ; curlH =−iωεE + J

hold in R3 in the distributional sense (+ radiation condition).
suppJ compact in R3 \Ω.
=⇒ Transmission conditions on Γ = ∂ Ω:

[E×n]Γ = 0 ; [n ·µH]Γ = 0
[H×n]Γ = 0 ; [n · εE]Γ = 0
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The dielectric scattering problem: Dielectric lenses
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The dielectric scattering problem: Computations with the VIE

[E.H. Koné, PhD thesis Rennes 2010]

3.3 Profil de rayonnement électrique
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Fig. 3.28 – Diffraction du dipôle magnétique de nombre d’onde κ = 7, de point source x0 =

(0, 0,−0.2) et de polarisation p = (0, 1, 0), par la demi-boule unité de permittivité ε
(8)
r . En haut à

gauche, le profil de rayonnement lointain. En haut à droite, une coupe de la première composante
de la partie imaginaire du champ intérieur. En bas à gauche et à droite, respectivement coupe et
champ à la surface de la deuxième composante de la partie réelle.
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The Volume Integral Equation

One considers the obstacle as a perturbation of the free-space situation:

curl 1
µ

curlE−ω2εE = iωJ ⇔

curlcurlE−ω
2E = iωJ−ω

2
ηχΩE + curlνχΩ curlE

with η = 1− εr , ν = 1− 1
µr

6.

The right-hand side has compact support:
Convolution with fundamental solution of curlcurl−ω2:

gω =
( 1

ω2 ∇div+1
)
Gω ; Gω (x) =

eiω|x |

4π|x |

(
curlcurl−ω

2)( 1
ω2 ∇div+1

)
= −

(
∆ + ω

2)
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Lippmann-Schwinger equation for the Maxwell problem

Representation of E in R3 by volume integrals over Ω

E = ω
2gω ∗ (ηχΩE) + gω ∗ (curlνχΩ curlE) + E inc

=⇒ Volume integral equation in Ω (for piecewise continuous coefficients)

E = ηAω E + νBω E + E inc

with

Aω E(x) =−∇div
∫

Ω
Gω (x−y)E(y)dy−ω

2
∫

Ω
Gω (x−y)E(y)dy

Bω E(x) = curl
∫

Ω
Gω (x−y)curlE(y)dy

Aω is strongly singular:

−∇div
∫

Ω
Gω (x−y)E(y)dy = p.v.

∫

Ω
∇x ∇y Gω (x−y) ·E(y)dy +

1
3

E(x)
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The Spectral Problem

The Problem

For which η and ν is the operator

I−ηAω −νBω

invertible [Fredholm] in H(curl,Ω) [L2(Ω)]?

Known: For “physically reasonable” (classical) material coefficients,
for example η < 1 and ν < 1,
the transmission problem and therefore also
the integral equation has a unique solution, ∀ω ∈ R.

The Spectral Problem

Determine the essential spectrum of the operator ηAω + νBω ,
in particular, when is

1 ∈ Spess(ηAω + νBω ) ?

Motivation:
Metamaterials, stability and convergence of numerical algorithms,. . .
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The Discrete Dipole Approximation

What is the DDA?

Simplest delta-collocation
∫

Ω
k(xi ,y)E(y)dy ∼ ∑

j 6=i
k(xi ,xj )E j +

1
αi

E i

together with a recipe for the value of αi .

From [Loke–Mengüç–Nieminen 2011]:
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equations (Fig. 1) where Pj are the unknowns; it is usually
performed in the following steps:

1. load or create the coordinates of the dipoles,
2. load or assign the polarizability aj to each dipole,
3. calculate the incident field Einc,j at each dipole,
4. assemble the interaction matrix A and
5. solve for P in the system of linear equations

Knowing Pj, other quantities such as the scattered field,
dipole force, Poynting vector, extinction, absorption and
scattering cross-sections, phase function, Mueller matrix
etc. can be calculated.

2.1. Dipole coordinates

The scattering object is represented by point dipoles
which are essentially Rayleigh scatterers, numbered
j¼ 1, . . . ,N with polarizabilities aj located at positions rj.
The shape file containing the dipole coordinates
is usually read from a text file in using r¼dlmread
(‘mycoordinates.txt’). The text file format for N
number of dipoles is as follows:

x1, y1, z1

x2, y2, z2

: : :

: : :

: : :

xN , yN , zN

The variable r is an N"3 array (matrix). The values for
the coordinates should be converted to wavelength units
if they are not already so.

The standard DDA uses the Cartesian coordinate
system and the dipoles are packed in a cubic lattice. The
number of dipoles required to represent the scatterer and
the minimal lattice spacing is determined by Draine and

Flatau [2] using the volume relation:

Nd3 ¼ 4
3pa3, ð1Þ

where the LHS is the cubic volume of the space occupied
by the N-dipole lattice with spacing d and the RHS is the
volume of the equivalent sphere with radius a. Thus, the
effective radius,

a¼ d
3N
4p

! "1=3

: ð2Þ

The lattice spacing, relative to the wavelength of the
incident light, has to be sufficiently small such that

dr 1
kjmj

: ð3Þ

For glass in air, it is required that do0:12. On the hand,
lattice spacings in the order of do0:01 are required for
noble metals due to their high imaginary component of
their refractive indices especially at shorter wavelengths.

2.2. Polarizability

The field Ej at a particular dipole causes it to be
polarized or acquire a dipole moment Pj. The extent to
which this occurs is determined by a quantity called
polarizability aj. The dipole moment is thus

Pj ¼ ajEj, ð4Þ

where aj is the polarizability tensor at each dipole [2].
The original implementation of DDA Purcell and

Pennypacker [1] used the Clausius–Mossotti polarizability,
given by

aCM
j ¼

3d3

4p
m2

j %1

m2
j þ2

 !
¼

3d3

4p
ej%1

ejþ2

! "
: ð5Þ

A review of subsequent development and different formula-
tions of the polarizability calculation is available from
Yurkin and Hoekstra [5]. Currently, the most popular form

Fig. 1. The system of equations comprises the interaction matrix (A), the unknown dipole moments (P) and the incident field (Einc). A is a square matrix
containing N"N of Ajk 3"3 tensors, where N is the number of dipoles.

V.L.Y. Loke et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 112 (2011) 1711–17251712

is the lattice dispersion relation (LDR) [13]:

aLDR
j ¼

aCM
j

1þ
aCM

j

d3
½ðb1þm2b2þm2b3SÞðkdÞ2& 2

3 iðkdÞ3'

, ð6Þ

b1 ¼&1:891531, b2 ¼ 0:1648469,

b3 ¼&1:7700004, S(
X3

j ¼ 1

ðâjêjÞ
2,

where â and ê are unit vectors defining the direction and
polarization of the incident light.

The polarizability of each dipole can be different in the
x, y and z directions for anisotropic substances and
different from the other dipoles for inhomogeneous
materials. The polarizability values are arranged in the
same sequence as the dipole coordinates. However,
they are transposed from N)3 to the 3N)1 array of
ax1 ,ay1 ,az1 ,ax2 ,ay2 ,az2 , . . . ,axN ,ayN ,azN , so that the inverse
polarizabilities can conveniently fit into the diagonal of
the interaction matrix when compacting (10) into (11).

The polarizability values can be loaded from a text file,
as with the coordinates, in the N)3 format, then trans-
posed to 3N)1:

alph ¼ dlmreadð‘ mypolarizabilities:txt’ Þ;

alph ¼ col3to1ðalphÞ;ðutility function included

in the toolboxÞ

In many cases, we only know the relative refractive
index (or indices) but not the polarizabilities, in which
case, they can be calculated using

alph ¼ polarizability_LDRðd;m;kvec;E0Þ:

In the initial release of the toolbox, the above function
caters for isotropic substances only, in the sense that the
refractive index is the same in all directions. However, the
anisotropic feature can be easily implemented; the func-
tion (6) can be calculated for each axis. Form birefrin-
gence, on the other hand, is due to the arrangement of the
dipoles.

The scatterer can be homogeneous or made from
composite materials. It is a matter of having different
sets of polarizabilities, calculated for corresponding
dipoles coordinates, for different materials. For example,
if a silica sphere is coated with a layer of gold, there will
be two sets of appended coordinates and their corre-
sponding polarizabilities.

2.3. The system of linear equations

In addition to the incident field Einc,j an each dipole,
there are the field contributions from other re-radiating
dipoles. Let Ej be the time harmonic E-field amplitude
at each dipole location rj due to the incident field
Einc,j ¼ E0expðikrj&iotÞ plus contributions from N–1
dipoles. A system of equations can be initially constructed
as follows:

Ej ¼ Einc,j&
X

kaj

AjkPk, ð7Þ

where Ajk is the tensor that represents the interaction
between a receiving dipole at rj and the radiating dipole
at rk. The electric field from a radiating electric dipole is
defined in Section 9.2 of [14] as

E¼
1

4pe0
k2ðr̂ ) pÞ ) r̂

eikr

r
þ½3r̂ðr̂ * pÞ&p'

1
r3
&

ik
r2

! "
eikr

# $
,

ð8Þ

which is derived from Maxwell’s equations. Using the
vector identity ðr) pÞ ) r¼ pðr * rÞ&rðr * pÞ, and following
the sign convention in (7), we obtain the block off-
diagonal 3)3 interaction tensor defined in Draine and
Flatau [2],

Ajk ¼
expðikrjkÞ

rjk
k2ðr̂ jkr̂ jk&13Þþ

ikrjk&1

r2
jk

ð3r̂ jkr̂ jk&I3Þ

" #
, jak,

ð9Þ

where rjk is the distance from points rj to rk, r̂ jk is the unit
vector in the direction from points rj to rk. The dipole
interaction tensor Ajk is related to the Green’s tensor Gjk of
the electric field from the radiating dipole, i.e., Ajk ¼ k2Gjk.
Rigorous derivation of the Green’s tensor is discussed by
Yurkin and Hoekstra [5]. The pertinent point here is
that DDA is a numerically exact method, derived from
Maxwell’s equations.

From (4) we can define the diagonal tensors as
Ajj ¼ a&1

j , and substituting into (7) gives

Einc,j ¼ AjjPjþ
X

kaj

AjkPk: ð10Þ

The above equation can be simplified by combining the
two matrices since their non-zeros tensors do not overlap.
We are left with solving 3N unknown dipole moments Pj

in the following exactly determined system of 3N linear
equations (Fig. 1):

XN

k ¼ 1

AjkPj ¼ Einc,j: ð11Þ

2.4. The incident E-field

The scatterer(s) may be illuminated by any form of
incident electric field, the simplest being the plane wave.
For the calculation of the E-field of each dipole at rj, we
leave out time harmonic component & iot of the E-field
and just use Einc,j ¼ E0expðikrjÞ in the function:

Ei ¼ E_incðE0;kvec;rÞ

The wave vector k¼ ð0,0,1Þ and the unit vector
ê0 ¼ ð1,0,0Þ means that the plane wave propagates in the
z-direction and is x-polarized. If the plane wave has left-
circular polarization and propagates in y-direction,
k¼ ð0,1,0Þ and ê0 ¼ ð1,0,iÞ. For wave vectors that are not
aligned with any axis, the unit vector of the incident field
ê0 and the wave vector k given an arbitrary incident angle
is calculated using simple trigonometry.

Arbitrary incident light, e.g., a tightly focused Gaussian
laser beam, a Laguerre–Gauss donut beam, a Bessel beam,
or even a plane wave can be modelled using beam shape

V.L.Y. Loke et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 112 (2011) 1711–1725 1713
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Discrete Dipole Approximation: Theory?

From [Yurkin-Hoekstra 2007]:

We present a review of the discrete dipole approximation (DDA), which is a general method 
to simulate light scattering by arbitrarily shaped particles. We put the method in historical 
context and discuss recent developments, taking the viewpoint of a general framework based 
on the integral equations for the electric field. We review both the theory of the DDA and its 
numerical aspects, the latter being of critical importance for any practical application of the 
method. Finally, the position of the DDA among other methods of light scattering simulation 
is shown and possible future developments are discussed. 
 

The DDA is called the coupled dipole method or approximation by some researchers 
[12,13]. There are also other methods, such as the volume integral equation formulation [14] 
and the digitized Green’s function (DGF) [7], which were developed completely 
independently from PP. However, later they were shown to be equivalent to DDA [8,15]. In 
this review we will use the term DDA to refer to all such methods, since we describe them in 
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Discrete Dipole Approximation: Theory?

From [Yurkin-Hoekstra 2007]:

 [59]  Okamoto H, Macke A, Quante M, Raschke E. Modeling of backscattering by non-spherical ice particles 
for the interpretation of cloud radar signals at 94 GHz. An error analysis. Contrib Atmos Phys 
1995;68:319-334. 

 [60]  Liu CL, Illingworth AJ. Error analysis of backscatter from discrete dipole approximation for different ice 
particle shapes. Atmos Res 1997;44:231-241. 

 [61]  Lemke H, Okamoto H, Quante M. Comment on error analysis of backscatter from discrete dipole 
approximation for different ice particle shapes [ Liu, C.-L., Illingworth, A.J., 1997, Atmos. Res. 44, 231-
241.]. Atmos Res 1998;49:189-197. 

 [62]  Liu CL, Illingworth AJ. Reply to comment by Lemke, Okamoto and Quante on 'Error analysis of 
backscatter from discrete dipole approximation for different ice particle shapes'. Atmos Res 1999;50:1-2. 

 [63]  Yurkin MA, Maltsev VP, Hoekstra AG. Convergence of the discrete dipole approximation. II. An 
extrapolation technique to increase the accuracy. J Opt Soc Am A 2006;23:2592-2601. 

 [64]  Fuller KA, Mackowski DW. Electromagnetic scattering by compounded spherical particles. In: 

Web search for “discrete dipole approximation”

Google Scholar: 6180 hits
MathSciNet: 1 hit

???
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Discrete Dipole Approximation: References

From [Yurkin-Hoekstra 2007]:
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Discrete Dipole Approximation: Applications

From [Okamoto-Xu 1998]:

Earth Planets Space, 50, 577–585, 1998

Light scattering by irregular interplanetary dust particles

Hajime Okamoto1∗ and Yu-lin Xu2

1Kashima Space Research Center, Communications Research Laboratory, Japan
2Department of Astronomy, University of Florida, U.S.A.

(Received December 17, 1997; Revised March 13, 1998; Accepted March 24, 1998)

We review recent progresses in light scattering for non-spherical particles. Special attention is paid to cluster
of spheres in order to improve our understanding of interplanetary dust particles. For scattering by non-spherical
particles the discrete-dipole approximation (DDA) has widely been used in many scientific fields. However mainly
due to the requirements of large computing memory and long computing time, the applicability of this theory is
practically limited for rather small particle compared with wavelength. In order to overcome this practical problem,
i.e., the large particle can not be calculated by the DDA, we recently developed the a1-term method, which is
a modification version of the DDA where the dipole polarizability is determined by the first term of scattering
coefficient in Mie theory. Accuracy of this method is tested by comparing the solutions by the a1-term method with
those by modal analysis, which gives the analytical solutions for cluster of spherical monomers. According to the
error analysis mentioned above, the applicabilities of the a1-term method are established as follows. The maximum
size parameter of the monomer in the cluster is 1 and the total size parameter of the cluster can exceed X ∼ 100
when the N ∼ 106 dipoles are used. We show the extinction efficiencies and asymmetry factors for cluster of
spheres whose size parameter is larger than the wavelength, e.g., the volume equivalent size parameter X is larger
than 30. Finally we summarize the applicabilities of DDA, T-Matrix, modal analysis and the a1-term method. The
a1-term method can partly fulfill a gap where both DDA and the ray tracing technique based on geometrical optics
can not be applied when the target is cluster. However for the target which has edges remains to be problematic.
This would be the topic which should be focused on future research.

1. Introduction
For homogeneous sphere, there exists analytical method

and this, Mie theory, has been widely used in many applica-
tions. By this method, it is possible to cover wide range of
size distribution of particles. Although this theory is quite
useful because of the short computing time for calculations,
its applicability is questionable in many astrophysical situ-
ations. For example it becomes recognized that the inter-
planetary dust particle does not have a spherical shape. This
has been proved by air-craft experiments in the stratosphere
(e.g., Brownlee, 1978). Actually any particle in nature is not
a perfect sphere. Therefore it is highly demanded to develop
light scattering theory for non-spherical particle. In 1975
Asano and Yamamoto developed a theory for homogeneous
spheroidal particle. In this method the Maxwell’s equations
are expressed in terms of the spheroidal coordinate. This
method is called separation of variables method. It is also
known that the scattering problem for infinite cylinder and
spherewith core-mantle structure are also analytically solved
by the similar separation of variables techniques. T-Matrix
method is very attractive for the particle which has rotation-
ally symmetric structure (Mishchenko et al., 1997). Unfor-
tunately it seems there are not many hopes to find analytical

∗This work was mainly done when H. O. was in Center for Climate
System Research, University of Tokyo.

Copy right c⃝ The Society of Geomagnetism and Earth, Planetary and Space Sciences
(SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan;
The Geodetic Society of Japan; The Japanese Society for Planetary Sciences.

solutions for particles which do not have any symmetry. If
this is true, we have to improve approximate theories for
non-spherical particle.
The discrete-dipole approximation (DDA) was originally

developed by Purcell and Pennypacker (1973). TheDDAhas
been used inmany fields, e.g., astronomy (e.g., Draine, 1988;
Kozasa et al., 1992, 1993), planetary sciences (West, 1991;
Lumme and Rahola, 1994; Okamoto et al., 1994) and atmo-
spheric sciences (e.g., Flatau et al., 1990). The DDA seems
to be promising for non-spherical particles since this tech-
nique is easily applicable to any target geometries as long
as the size parameter of the particle X is less than 10–15.
In Section 2, we describe the theoretical basis of the a1-term
methodwhichwas developed to overcome the practical prob-
lem in the DDA (Okamoto, 1995). Explicit expression of the
prescription to obtain the dipole polarizability, which is a cru-
cial parameter to determine accuracy of the DDA, is given.
Since these methods are approximate theories, the accuracy
of them should be verified by comparing their solutions with
those obtained by an analytical method or with light scatter-
ing experiments. Recently substantial efforts havebeenmade
to derive rigorous analytic solutions for cluster of spherical
monomers (Fuller, 1991; Mackowski, 1991; Xu, 1995). By
using this so called modal analysis, we can have a unique
opportunity to test the accuracy of the a1-term method. The
results in error analysis are given in Section 3. In Section 4,
to see the effect of non-sphericity in the wide range of sizes,
we carry out the calculations for randomly oriented clusters
by the a1-term method where the size parameter X range

577

More recently:

Nano-science, “optical tweezers”
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Discrete Dipole Approximation: An example

[Loke–Mengüç–Nieminen, JQSRT 2011]

size effects in the nanoscale but we approximate it with
the bulk value.

The maximum acceptable lattice spacing, as specified
in (3), translates to d! 0:03. On that basis, the number of
dipoles required for the 50 nm Au sphere, calculated from
(1), is N¼32. However, Fig. 18a clearly shows large errors
for l4500 nm, coinciding with the increasing imaginary
component of the gold (Fig. 17). Yurkin et al. [35]
suggest that in addition to amplitude errors, large phase
errors exist if the polarizability (related to the refractive
index) has a high imaginary component. Based on the

convergence data, we estimate the required lattice
spacing to be in the order of dr0:01.

To validate the DDA-SI implementation we compare
the absorption efficiency spectrum with that calculated
FDTD (finite difference time domain, Lumerical v7.0.1,
www.lumerical.com). Fig. 18b shows good agreement
between both sets of results. The absorption cross-section
for the Lumerical FDTD method is calculated using
in-built functions. For DDA-SI, the absorption cross-sec-
tion Cabs is calculated as per Draine and Flatau [2] except
that the related components of the incident and scattered

Fig. 14. Relative field intensity in the region comprising a simulated gold AFM probe tip in the vicinity of a 20 nm gold nanoparticle on a silicon surface,
illuminated by an evanescent wave.
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Fig. 13. The scattered intensity versus the scattering angle for a 540 nm polystyrene sphere on a flat Si surface. The incident light was s-polarized,
wavelength l¼ 632:8 nm and the incident angle was g¼ 03 .
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The Maxwell VIE

Volume integral equation in Ω, piecewise constant coefficients

E = ηAω E + νBω E + E inc

with

Aω E(x) =−∇div
∫

Ω
Gω (x−y)E(y)dy−ω

2
∫

Ω
Gω (x−y)E(y)dy

Bω E(x) = curl
∫

Ω
Gω (x−y)curlE(y)dy

Two subproblems:
1 The dielectric problem (ν = 0, operator Aω )
2 The magnetic problem (η = 0, operator Bω )
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Analysis of the acoustic VIE: Partial integration and extension

1. Partial integration
For simplicity, a(x) piecewise constant, k(x) constant:
a(x) = a = α + 1 in Ω, a(x) = 1 in Rd \ Ω̄, β (x)≡ 0.
The VIE

u(x)−div
∫

Ω
Gk (x−y)α ∇u(y)dy = uinc(x)

becomes after integration by parts

au(x)+αk2
∫

Ω
Gk (x−y)u(y)dy−α div

∫

Γ
Gk (x−y)n(y)u(y)dy = uinc(x)

or
au + αk2Nk u + αDk γu = uinc in Ω

Here Nk is the Newton (volume) potential, Dk is the double layer potential,
and γu is the trace of u on the boundary Γ.

How to deal with the operator Dk γ ?

Trick: Treat γu as independent unknown. −→ 2
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Analysis of the acoustic VIE: Partial integration and extension

2. Extension

au + αk2Nk u + αDk γu = uinc in Ω

Taking the trace on Γ, we obtain a second equation with the
double layer boundary integral operator Kk

aγu + αk2
γNk u + α( 1

2 I+ Kk )γu = γuinc on Γ

This gives the (2×2) system, triangular+compact,

Coupled boundary-domain integral equation system
(

aI+ αk2Nk αDk

αk2γNk
a+1

2 I+ (a−1)Kk

)(
u
γu

)
=

(
uinc

γuinc

)

The system is Fredholm on H1(Ω)×H
1
2 (Γ) if and only if

a 6= 0 and
a

a−1
6∈ Σ = Spess(

1
2 I+ Kk )
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Next case: Dielectric VIE with Smooth permittivity

The dielectric VIE
E−Aω ηE = E inc

with

Aω E(x) =−∇div
∫

Ω
Gω (x−y)E(y)dy−ω

2
∫

Ω
Gω (x−y)E(y)dy

Theorem [Colton-Kress ’98]

If ε ∈ C2(R3), then on the space of functions satisfying div(εE) = 0, the
operator Aω η is equivalent to a weakly singular integral operator.

Proof: Integration by parts (η = 1− ε)

div(εE) = 0 =⇒ div(ηE) = divE =−1
ε

(∇ε ·E)

∇divGω ∗ (ηE) = ∇Gω ∗div(ηE) =−∇Gω ∗ ( ∇ε

ε
·E) .

Does not work for
discontinuous permittivity !
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discontinuous permittivity !
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A numerical spectrum [from J. Rahola SIJSC 2000]

EIGENVALUES OF SCATTERING INTEGRAL OPERATOR 1743
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Fig. 3.1. Eigenvalues of the coefficient matrix for a spherical scatterer of radius kr = 1 and
refractive index m = 1.4 + 0.05i. The sphere is discretized with 136 computational cells (upper) and
480 computational cells (lower).

4. Spectrum of the integral operator. In this section we will explain what
is meant by the spectrum of a linear operator, how to compute points in the spectrum
of the scattering integral operator, and how they correspond to the eigenvalues of the
coefficient matrix of the discretized problem.

The spectrum of a linear operator T is the set of points z in the complex plane
for which the operator T − z1 does not have an inverse operator that is a bounded
linear operator defined everywhere. Here 1 stands for the identity operator.

A matrix is the prototype of a finite-dimensional linear operator. The spectrum
of a matrix is exactly the set of its eigenvalues, that is, the point spectrum. In the
rest of this paper, we reserve the word “spectrum” only for the infinite-dimensional
integral operator and talk only about eigenvalues of matrices. For an eigenvalue λ,
there exists an eigenvector x such that Ax = λx, and thus the matrix A − λI is
singular and not invertible.

η = 1−m2 =−0.9575−0.14 i : line ∼ 1−η .[0,1]
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A conjecture [quote from Fukumoto & Samokhin 2011]

2 Y. Fukumoto and A. B. Samokhin

explicit form. In case a monochromatic wave of frequency ω (∈ R) is incident on a
dielectric body Q of finite extent, we may introduce the complex dielectric permit-
tivity tensor ε̂(x), represented by a 3×3 matrix, as functions of the position x inside
the scatterer, whose imaginary part, being denoted by Im[ · ], has a link with the
electro-conductivity tensor σ̂(x) via Im[ε̂(x)] = σ̂(x)/ω. We take the permittivity
of the ambient medium, being looked upon as a vacuum, to be ε0, a scalar, and
assume the magnetic permeability to be constant throughout the space including
both the scatterer and the ambient medium. With this setting, the essential spectra
of the volume integral operator contains the following set of complex numbers λ
(∈ C)

σs =

{
λ =

1

ε0

3∑

m=1

3∑

n=1

εmn(x, ω)qmqn

∣∣∣ x ∈ Q, q ∈ R3 with q2
1 + q2

3 + q2
3 = 1

}
,

(1.1)
in addition to λ = 1. On the assumption of the Hölder continuity of ε̂(x, ω) through-
out the whole space, the latter (λ = 1) coincides with the limiting value of σs at
the boundary ∂Q of the scattering body.

For a scatterer comprising isotropic medium, εmn(x, ω) = ε(x, ω)δmn, with δmn

being Kronecker’s delta, (1.1) collapses to the set {λ = ε(x, ω)δmn/ε0 | x ∈ Q} .
This set generically occupies a finite region in the complex plane, including λ = 1
owing to the Hölder continuity across the boundary ∂Q, as its real part Re[λ] and
imaginary part Im[λ] are parameterized by three real numbers x (∈ R3), but when
ε is a constant, it degenerates to a curve connecting λ = 1 and this constant value
as demonstrated by Rahola (2000) and Budko & Samokhin (2006a, 2006b). The
isotropic case is special in the sense that, for a give point x (∈ Q), the set (1.1)
includes only a single element λ = ε(x, ω)/ε0. For this case, Budko & Samokhin
(2007) constructed, in a tidy form, the singular mode or the singular eigenfunc-
tion corresponding to λ = ε(x, ω)/ε0, which complies with Weyl’s definition of the
essential spectrum (Hislop & Sigal 1996). Resemblance of this electromagnetic sin-
gular mode with the square root of the Dirac delta function is noteworthy (see also
Budko & Samokhin 2006a).

In a general situation of practical importance, dielectric materials comprise
anisotropic media. Media with anisotropic permittivity exhibit by far a richer elec-
tromagnetic and optical behaviour as exemplified by plasmas (e.g. Ginzburg 1962)
and chiral crystals (e.g. Berry & Dennis 2003). The modern nano-technology has
even manufactured the so called photonic crystals which have negative refraction
index (Cubukcu et al. 2003). The goal of the present investigation is to write out
in full the singular mode corresponding to the spectra (1.1) for general anisotropic
media, by extending the isotropic case (Budko & Samokhin 2007). This would be
one of a few singular modes available explicitly in a tidy form.

We are pursuing the spatial spectra λ of the singular integral operator with a
given external monochromatic wave of arbitrary real frequency ω, among which
the Maxwell equations are restored only when λ = 0. The realizability of λ = 0 as
an essential spectrum is a question of our concern to be examined in §5. Singular
modes corresponding to temporal spectra have been addressed in the contexts of
waves on and of stability of fluid and plasma motions, but only a few cases ad-
mit explicit form of the singular modes. Among them are singular modes of the
Vlasov equation for oscillation of a collisionless plasma (Van Kampen 1955; Case

Article submitted to Royal Society

Translation:

Conjecture

Spess(Aω ) = [0,1]

In reality:

Theorem (Ω regular) [Pasciak 1984, Co 2008]

Spess(Aω ) =
{

0, 1
2 ,1
}
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The dielectric scattering problem: ν = 0

Volume integral equation: E−ηAω E = E inc

Results (Co & E. Darrigrand & E.H. Koné 2009)

1 The operator Aω can be extended to L2(Ω) as a bounded operator.
2 It has H(curl,Ω) and H(div,Ω) as invariant subspaces.
3 For E inc in H(curl,Ω)∩H(div,Ω), the integral equation in L2 has the

same solutions as in H(curl,Ω) or in H(div,Ω).
4 Aω −A0 is compact in L2(Ω).
5 Sp(A0)⊂ [0,1]

0 and 1 are eigenvalues of infinite multiplicity of A0
1
2 is accumulation point of eigenvalues, and
Spess(A0) = {0, 1

2 ,1} if Γ is smooth

The dielectric scattering problem can be solved by solving the volume
integral equation in L2(Ω).
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Analysis of A0 : Helmholtz decomposition

Orthogonal decompositions:

L2(Ω)3 = ∇H1
0 (Ω)⊕V ; V = H(div0,Ω)

= ∇H1(Ω)⊕V0 ; V0 = H0(div0,Ω)

= ∇H1
0 (Ω)⊕V0⊕W ; W = ∇H1(Ω)∩V : harmonic vector fields

Recall: A0u(x) =−∇div
∫

Ω

1
4π|x−y | u(y)dy

Lemma (Integration by parts)

u ∈ ∇H1
0 (Ω) =⇒ A0u= u

Isomorphisms: W 3 u↔ γnu = n ·u
∣∣
∂ Ω
∈ H−1/2

∗ (∂ Ω)
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The magnetic scattering problem: η = 0 (Co & E. Darrigrand & H. Sakly)

Volume integral equation: E−νBω E = E inc

Clear: The integral operator

Bω E(x) = curl
∫

Ω
Gω (x−y)curlE(y)dy

is bounded from H(curl,Ω) to itself and to H(div0,Ω).
Integration by parts: For E ∈ C∞

0 (Ω) one has

Bω E = curlGω ∗curlE = curlcurlGω ∗E

= ∇divGω ∗E− (∆ + ω
2)Gω ∗E + ω

2Gω ∗E

= E−Aω E

Proposition (Kirsch & Lechleiter 2010)

The operator Bω can be extended from C∞
0 (Ω) to L2(Ω) as a bounded

operator B̂ω .
There holds then

B̂ω = I−Aω
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The Function Space is Important Here

Theorem 1

Solving the volume integral equation

E−νBω E = E inc

in H(curl,Ω) is equivalent to the magnetic Maxwell scattering problem.

Theorem 2

Let B̂ω : L2(Ω)→ L2(Ω) be the extended operator. Solving the volume
integral equation

E−νB̂ω E = E inc

in L2(Ω) gives the Maxwell equations in R3 \Γ with the transmission
conditions

[ 1
µ

E×n]Γ = 0 ; [n ·H]Γ = 0
[H×n]Γ = 0 ; [n ·E]Γ = 0

Different problem !
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Explanation : For E ∈ H(curl,Ω), one has

B̂ω E = Bω E + curl
∫

Γ
Gω (x−y)E(y)×n(y)ds(y)

The latter term does not have a continuous extension to L2(Ω).

Proposition 1

The operator Bω cannot be extended from H(curl,Ω) to L2(Ω) as a
bounded operator.

Proposition 2

Although on C∞
0 (Ω) we have

Bω = I−Aω ,

the commutator of Aω and Bω on H(curl,Ω) is not even compact.

=⇒ No joint essential spectrum of Aω and Bω in the Lippmann-Schwinger
operator I−ηAω −νBω .

Spess(ηAω + νBω ) 6= Spess(ηAω + νB̂ω ) = {η ,ν ,
η + ν

2
}
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A coupled boundary-domain integral equation system

Definition: X = H(curl,Ω)∩H(div0,Ω)
For E inc ∈ X , the equation B0E = E inc is equivalent to the system




I −∇S0 curlS0

0 1
2 I−K ′ γn curlS0

0 −γ×∇S0
1
2 I+ M






E
γnE
γ×E


=




E inc

γnE inc

γ×E inc




with the normal trace γnu = n ·u, the tangential trace γ×u = n×u, the
single layer potential S0 and the magnetic field integral operator M

Mu(x) :=
∫

Γ
n(x)×curlx g0(x−y)u(y) ds(y)

Attention: The boundary trace space is H−
1
2 (Γ)×H−

1
2 (div,Γ)

In order to be able to use symbols, one first has to use Helmholtz
decomposition in H−

1
2 (div,Γ). The boundary space becomes

H−
1
2 (Γ)×H

1
2 (Γ)×H

3
2 (Γ)
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2 I−K ′ γn curlS0

0 −γ×∇S0
1
2 I+ M






E
γnE
γ×E


=




E inc

γnE inc

γ×E inc




with the normal trace γnu = n ·u, the tangential trace γ×u = n×u, the
single layer potential S0 and the magnetic field integral operator M

Mu(x) :=
∫

Γ
n(x)×curlx g0(x−y)u(y) ds(y)

Principal symbols of boundary pseudodifferential operators
[Co & Stephan 1990]
⇒ ellipticity⇒ essential spectrum.
Attention: The boundary trace space is H−

1
2 (Γ)×H−

1
2 (div,Γ)

In order to be able to use symbols, one first has to use Helmholtz
decomposition in H−

1
2 (div,Γ). The boundary space becomes

H−
1
2 (Γ)×H

1
2 (Γ)×H

3
2 (Γ)

Martin Costabel (Rennes) VIEs IMSE 2014, 24/07/2014 32 / 36



Result for the magnetic problem (Γ smooth)

Result (Co & E. Darrigrand & H. Sakly 2011)

If Γ is smooth:
1 Spess(Bω ) = {0, 1

2 ,1}
2 Spess(ηAω + νBω ) = {0, η

2 ,η , ν

2 ,ν}
3 The Lippmann-Schwinger operator is Fredholm in H(curl,Ω) if and

only if
εr 6∈ {0,−1} and µr 6∈ {0,−1}

What if Γ is not smooth?

Spectrum of the boundary integral operator system
( 1

2 I−K ′ γn curlS0

−γ×∇S0
1
2 I+ M

)

on a Lipschitz boundary ??
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Another coupled boundary-domain integral equation system

For E inc ∈ X = H(curl,Ω)∩H(div0,Ω), the volume integral equation
(I−ηA0−νB0)E = E inc is equivalent to the system




I −η∇S −ν curlN 0
0 I−η∂nS −νγn curlN 0
0 0 (1−ν)I ν∇S
0 0 0 (1−ν)I+ ν∂nS







E
γnE

curlE
γn curlE


=




E inc

γnE inc

curlE inc

γn curlE inc




on the space X ×H−
1
2 (Γ)×H(div0,Ω)×H−

1
2 (Γ).

Here N is the Newton (volume) potential and ∂nS = 1
2 I+ K ′ is the normal

derivative of the single layer potential (for the Laplace equation).

For Γ Lipschitz, it is known that Spess(
1
2 I+ K ′)⊂ (0,1).

[Poincaré 1896, Steinbach & Wendland 2001, ]

Example: An edge of opening π/2 gives a contribution [ 1
4 ,

3
4 ].
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Here N is the Newton (volume) potential and ∂nS = 1
2 I+ K ′ is the normal

derivative of the single layer potential (for the Laplace equation).

For Γ Lipschitz, it is known that Spess(
1
2 I+ K ′)⊂ (0,1).

[Poincaré 1896, Steinbach & Wendland 2001, Co 2007]

Example: An edge of opening π/2 gives a contribution [ 1
4 ,

3
4 ].
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Final Result

Theorem [Co-Darrigrand-Sakly 2012] For Γ Lipschitz:

Let Σ = Spess(
1
2 I+ K ′)⊂ (0,1).

1 Spess(Aω ) = {0,1}∪Σ

2 Spess(Bω ) = {0,1}∪ (1−Σ)

3 Spess(ηAω + νBω ) = {0,η ,ν}∪ηΣ∪ν(1−Σ)

4 The Lippmann-Schwinger operator I−ηAω −νBω is Fredholm in
H(curl,Ω) if and only if

εr ,µr 6= 0 and
1

1− εr
6∈ Σ ,

1
1−µr

6∈ Σ
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Thank you for your attention!Thank you for your attention!
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