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Tutorial: Acoustic scattering by a penetrable object

The scattering problem

‘diva(x)Vu—kk(x)zu = f‘ inRY,  Sommerfeld rad. cond. at e

a(x) =1, k(x) = k € C outside of a bounded domain €, supp f compact.

Martin Costabel (Rennes) IMSE 2014, 24/07/2014 2/36



Tutorial: Acoustic scattering by a penetrable object

‘diva(x)Vu—kk(x)zu = f‘ inRY,  Sommerfeld rad. cond. at e

a(x) =1, k(x) = k € C outside of a bounded domain €, supp f compact.

<

Rewritten as a perturbation problem

(A+K)u=f—(divaV+B)u|, a(x)=a(x)—1, B(x)=k(x)* —K?
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Tutorial: Acoustic scattering by a penetrable object

‘diva(x)Vu—kk(x)zu = f‘ inRY,  Sommerfeld rad. cond. at e

a(x) =1, k(x) = k € C outside of a bounded domain 2, supp f compact.

Rewritten as a perturbation problem

(A+K)u=f—(divaV+B)u|, a(x)=a(x)—1, B(x)=k(x)* —K?

The Volume Integral Equation: Convolution with the fundamental solution

elklx|

‘u:—Gk*f+diva*(ocVu)+Gk*(ﬁu)‘ Gk(x):mford:S

For any domain Q with @ ¢ @ c RY:  u"®(x) := — [ Gk(x — y)f(y) dy

A

u(x) ~dv [ Gu(x =)o) Vu() oy — | Gelx=y)B)uly) dy = " (x) [x €2

v
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The VIE, classical: Lippmann-Schwinger equation

Situation: a(x) =1=a =0

Fredholm alternative
Assumption: B € L*. Then the VIE

u(x) - [ Gulx=y)B(y)u(y)dy = u™(x)

is a classical (weakly singular) second kind Fredholm integral equation.
The Fredholm alternative holds in L2(£2) and, if 8 is smooth, in H5(Q) for
any suitable s.

This is one of the standard methods for proving existence of a solution of
the scattering problem.
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The VIE, still classical

Situation: ac C'(RY) = a =0 on dQ
The operator
u s divGg* (V)

maps H'(Q) boundedly to itself (and L2 to L?), but it is strongly singular
and not compact.
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The VIE, still classical

Situation: ac C'(RY) = a =0 on dQ
The operator
u s divGg* (V)

maps H'(Q) boundedly to itself (and L2 to L?), but it is strongly singular
and not compact.

One can obtain a weakly singular Fredholm integral equation by partial
integration:

div G * (@ Vu)(x) = —div/QVy(Gk(x—y)oc(y)) u(y)dy
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The VIE, still classical

Situation: ac C'(RY) = a =0 on dQ
The operator
u s divGg* (V)

maps H'(Q) boundedly to itself (and L2 to L?), but it is strongly singular
and not compact.

One can obtain a weakly singular Fredholm integral equation by partial
integration:

div G * (@ Vu)(x) = —div/QVy(Gk(x—y)oc(y)) u(y)dy
=2 [ Gelx=y)ey)uty)dy

—div [ Gulx—y)(Vo)(y)u(y) oy
Q
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The VIE, still classical

Situation: ac C'(RY) = a =0 on dQ

The operator
u s divGg* (V)

maps H'(Q) boundedly to itself (and L2 to L?), but it is strongly singular
and not compact.

One can obtain a weakly singular Fredholm integral equation by partial
integration:
div G * (aVu)(x) = — div/Q V, (Gk(x—y)a(y)) u(y)dy
=2 [ Gelx=y)ey)uty)dy
~div [ Ge(x=y)(Va)(y) uly)
= —a(0)u(x) =k [ Gulx—y)a(y)u(y)oy

—div [ Gulx—y)(V o)) uly) oy

IMSE 2014, 24/07/2014
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The VIE, still classical

Situation: ac C'(RY) = a =0 on dQ

Fredholm alternative
Assumption: B € L*. Then the VIE

a()u(x) - [ Glx=y)(B() ~K2a)uy) oy
+dv [ G(x=y)(Y @)(y) uly) oy = u™(x)

is a classical (weakly singular) second kind Fredholm integral equation

if and only if a(x) # 0 for all x € Q.
The Fredholm alternative then holds in L2($2) and, if & and B are smooth,
in H5(Q2) for any suitable s.

This is one of the standard methods for proving existence of a solution of
the scattering problem [Colton-Kress 1983].
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The VIE, no longer classical

Situation: a € C'(Q), i.g. discontinuous across ' = 9.

Theorem: Fredholm alternative [??]

Assumption: B € L*. Then the VIE

u(x) —div/QGk(x—y)a(y)Vu(y) dy—/QGk(X—Y)ﬁ(}’)u(y) dy = u™(x)

is Fredholm in H'(Q) if and only if
Q@ a(x)#O0foral xeQ
Q a(x)# —1forallxerl
if " is smooth.
If [ is Lipschitz, then a sufficient condition is
@ and a(x) # —7% Voe X, xel.
Here X is a compact subset of (0, 1), the essential spectrum of the double
layer potential operator A1+ K on H'/2(T).
¥ = {1} if I is smooth.

<
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Motivations for looking at VIEs:

Electromagnetic scattering by penetrable objects

Two motivations

@ Antennas for millimetre waves with dielectric lenses
Collaboration with colleagues in electronics (Rennes)
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Motivations for looking at VIEs:

Electromagnetic scattering by penetrable objects

Two motivations

@ Antennas for millimetre waves with dielectric lenses
Collaboration with colleagues in electronics (Rennes)
@ Discrete Dipole Approximation
A challenge...
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Electromagnetic scattering by a penetrable homogeneous object

For simplicity: Piecewise constant coefficients:

e=6iNnQ=Q", e=1inR3\Q=0Q",
Qr n=1-¢

p=uinQ p=1inR3\Q, v=1-21
supp |
C 4

Hr
Time-harmonic Maxwell equations

curlE =iouH; curlH=—iweE+J

hold in R3 in the distributional sense (+ radiation condition).
suppJ compact in R3\ Q.
— Transmission conditions on I = 9€2:

[E><n]|- = 0; [n-‘LLH]r
[Hxnlr = 0; [n-€Elf = 0

|
o
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The dielectric scattering problem: Dielectric lenses

ILA pour communication indoor & 62GHz. 4 ILA cgmpacte pour communication par
Source : IST satellite 8 49GHz [7]. Source : IETR
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The dielectric scattering problem: Computations with the VIE

[E.H. Koné, PhD thesis Rennes 2010]
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The Volume Integral Equation

One considers the obstacle as a perturbation of the free-space situation:
curl ﬁ curl E — 0’cE = iod <

curleurl E — 0°E = iod — 01 xqE + curl vy curl E
withn =1—¢, v:17i6.

The right-hand side has compact support:
Convolution with fundamental solution of curl curl —w?:

eia)\x\

1 .
9o = (EVd|v+1)Ga,; Go(x) = a7ix]
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The Volume Integral Equation

One considers the obstacle as a perturbation of the free-space situation:
curl ﬁ curl E — 0’cE = iod <

curleurl E — 0°E = iod — 01 xqE + curl vy curl E
withn =1—¢, v:17i6.

The right-hand side has compact support:
Convolution with fundamental solution of curl curl —w?:

eia)\x\

1 .
9o = (EVd|v+1)Gw; Go(x) = a7ix]

(curlcurl ~0?) (—; Vaiv+1) = — (& + o)
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Lippmann-Schwinger equation for the Maxwell problem

Representation of E in R® by volume integrals over
E = 0?gy * (NxaE) + go * (curl vyq curl E) 4 E®

— Volume integral equation in € (for piecewise continuous coefficients)

\ E = NAoE + VBoE + E™

with
AoE(x) = —Vdiv /Q Go(x— y)E(y) dy — o? /Q Go(x — y)E(y) dy

B, E(x) :curI/QGw(x—y)curl E(y)dy
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Lippmann-Schwinger equation for the Maxwell problem

Representation of E in R® by volume integrals over
E = 0?gy * (NxaE) + go * (curl vyq curl E) 4 E®

— Volume integral equation in € (for piecewise continuous coefficients)

\ E = NAoE + VBoE + E™

with
AE(x) = ~Veiv | Gulx—y)E(Y)dy— | Gulx—y)E()dy
ByE(x) = curI/QGw(x—y) curl E(y)dy

Ay is strongly singular:

—Vdiv/QGw(x—y)E(y) dy:p.v./QVXVyGw(x—y)~E(y) dy + %E(x)

Martin Costabel (Rennes) IMSE 2014, 24/07/2014 12/36



The Spectral Problem

The Problem

For which 17 and v is the operator

I-nAy—VBy

invertible [Fredholm] in H(curl, Q) [L?(Q)]?
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The Spectral Problem

The Problem

For which 17 and v is the operator

I-nAy—VBy

invertible [Fredholm] in H(curl, Q) [L?(Q)]?

Known: For “physically reasonable” (classical) material coefficients,
forexample n < 1andv <1,
the transmission problem and therefore also
the integral equation has a unique solution, Vo € R.

IMSE 2014, 24/07/2014 13/36
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The Spectral Problem

The Problem

For which 17 and v is the operator

I-nAy—VBy

invertible [Fredholm] in H(curl, Q) [L?(Q)]?

Known: For “physically reasonable” (classical) material coefficients,
forexample n < 1andv <1,
the transmission problem and therefore also
the integral equation has a unique solution, Vo € R.

The Spectral Problem

Determine the essential spectrum of the operator Ay, + VB,
in particular, when is

1€ Spegs(NA0 +VBo)  ?

Motivation:
Metamaterials, stability and convergence of numerical algorithms,. ..

Martin Costabel (Rennes) VIEs IMSE 2014, 24/07/2014 13/36



The Discrete Dipole Approximation

What is the DDA?

Simplest delta-collocation

1
| K6 EW oy ~ T k(x,%)Ej+ - E;
& i# 44

together with a recipe for the value of ;.
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The Discrete Dipole Approximation

What is the DDA?
Simplest delta-collocation

1
| k. EG)dy ~ Lk 3)E;+ - E,
2 i i

together with a recipe for the value of ;.

From [Loke—Mengiic—Nieminen 2011]:

The original implementation of DDA Purcell and is the lattice dispersion relation (LDR) [13]:
I{ennypacker [1] used the Clausius-Mossotti polarizability, oM
given by DR _ - i , 6)
of .
VN L A ) 1 lby +m2by +m2bsS)(kd) ~ 3 i(kd)’)
I 4n \m?+2 4m \gi+2)"

: . by =-1.891531, b, =0.1648469,
A review of subsequent development and different formula-

tions of the polarizability calculation is available from 3
Yurkin and Hoekstra [5]. Currently, the most popular form b; =—1.7700004, S= Z(ﬁjéj)z.
=1

where G and é are unit vectors defining the direction and
polarization of the incident light.
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Discrete Dipole Approximation: Theory?

From [Yurkin-Hoekstra 2007]:

We present a review of the discrete dipole approximation (DDA), which is a general method
to simulate light scattering by arbitrarily shaped particles. We put the method in historical
context and discuss recent developments, taking the viewpoint of a general framework based
on the integral equations for the electric field. We review both the theory of the DDA and its
numerical aspects, the latter being of critical importance for any practical application of the
method. Finally, the position of the DDA among other methods of light scattering simulation
is shown and possible future developments are discussed.

The DDA 1is called the coupled dipole method or approximation by some researchers
[12,13]. There are also other methods, such as the volume integral equation formulation [14]
and the digitized Green’s function (DGF) [7], which were developed completely
independently from PP. However, later they were shown to be equivalent to DDA [8,15]. In
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Discrete Dipole Approximation: Theory?

From [Yurkin-Hoekstra 2007]:

[59] Okamoto H, Macke A, Quante M, Raschke E. Modeling of backscattering by non-spherical ice particles
for the interpretation of cloud radar signals at 94 GHz. An error analysis. Contrib Atmos Phys
1995;68:319-334.

[60] Liu CL, Illingworth AJ. Error analysis of backscatter from discrete dipole approximation for different ice
particle shapes. Atmos Res 1997;44:231-241.

[61] Lemke H, Okamoto H, Quante M. Comment on error analysis of backscatter from discrete dipole
approximation for different ice particle shapes [ Liu, C.-L., Illingworth, A.J., 1997, Atmos. Res. 44, 231-
241.]. Atmos Res 1998;49:189-197.

[62] Liu CL, Illingworth AJ. Reply to comment by Lemke, Okamoto and Quante on 'Error analysis of
backscatter from discrete dipole approximation for different ice particle shapes'. Atmos Res 1999;50:1-2.

[63] Yurkin MA, Maltsev VP, Hoekstra AG. Convergence of the discrete dipole approximation. II. An

extrapolation technique to increase the accuracy. J Opt Soc Am A 2006;23:2592-2601.
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Discrete Dipole Approximation: Theor

From [Yurkin-Hoekstra 2007]:

[59] Okamoto H, Macke A, Quante M, Raschke E. Modeling of backscattering by non-spherical ice particles
for the interpretation of cloud radar signals at 94 GHz. An error analysis. Contrib Atmos Phys
1995;68:319-334.

[60] Liu CL, Illingworth AJ. Error analysis of backscatter from discrete dipole approximation for different ice
particle shapes. Atmos Res 1997;44:231-241.

[61] Lemke H, Okamoto H, Quante M. Comment on error analysis of backscatter from discrete dipole
approximation for different ice particle shapes [ Liu, C.-L., Illingworth, A.J., 1997, Atmos. Res. 44, 231-
241.]. Atmos Res 1998;49:189-197.

[62] Liu CL, Illingworth AJ. Reply to comment by Lemke, Okamoto and Quante on 'Error analysis of
backscatter from discrete dipole approximation for different ice particle shapes'. Atmos Res 1999;50:1-2.

[63] Yurkin MA, Maltsev VP, Hoekstra AG. Convergence of the discrete dipole approximation. II. An

extrapolation technique to increase the accuracy. J Opt Soc Am A 2006;23:2592-2601.

Web search for “discrete dipole approximation”

Google Scholar: 6180 hits
MathSciNet:
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Discrete Dipole Approximation: Theor

From [Yurkin-Hoekstra 2007]:

[59] Okamoto H, Macke A, Quante M, Raschke E. Modeling of backscattering by non-spherical ice particles
for the interpretation of cloud radar signals at 94 GHz. An error analysis. Contrib Atmos Phys
1995;68:319-334.

[60] Liu CL, Illingworth AJ. Error analysis of backscatter from discrete dipole approximation for different ice
particle shapes. Atmos Res 1997;44:231-241.

[61] Lemke H, Okamoto H, Quante M. Comment on error analysis of backscatter from discrete dipole
approximation for different ice particle shapes [ Liu, C.-L., Illingworth, A.J., 1997, Atmos. Res. 44, 231-
241.]. Atmos Res 1998;49:189-197.

[62] Liu CL, Illingworth AJ. Reply to comment by Lemke, Okamoto and Quante on 'Error analysis of
backscatter from discrete dipole approximation for different ice particle shapes'. Atmos Res 1999;50:1-2.

[63] Yurkin MA, Maltsev VP, Hoekstra AG. Convergence of the discrete dipole approximation. II. An

extrapolation technique to increase the accuracy. J Opt Soc Am A 2006;23:2592-2601.

Web search for “discrete dipole approximation”

Google Scholar: 6180 hits
MathSciNet: 1 hit
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Discrete Dipole Approximation: Theor

From [Yurkin-Hoekstra 2007]:

[59]

[60]

[61]

[62]

[63]

Okamoto H, Macke A, Quante M, Raschke E. Modeling of backscattering by non-spherical ice particles
for the interpretation of cloud radar signals at 94 GHz. An error analysis. Contrib Atmos Phys
1995;68:319-334.

Liu CL, Illingworth AJ. Error analysis of backscatter from discrete dipole approximation for different ice
particle shapes. Atmos Res 1997;44:231-241.

Lemke H, Okamoto H, Quante M. Comment on error analysis of backscatter from discrete dipole
approximation for different ice particle shapes [ Liu, C.-L., Illingworth, A.J., 1997, Atmos. Res. 44, 231-
241.]. Atmos Res 1998;49:189-197.

Liu CL, Illingworth AJ. Reply to comment by Lemke, Okamoto and Quante on 'Error analysis of
backscatter from discrete dipole approximation for different ice particle shapes'. Atmos Res 1999;50:1-2.
Yurkin MA, Maltsev VP, Hoekstra AG. Convergence of the discrete dipole approximation. II. An
extrapolation technique to increase the accuracy. J Opt Soc Am A 2006;23:2592-2601.

Web search for “discrete dipole approximation”

Google Scholar: 6180 hits

MathSciNet: 1 hit
?27?
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Discrete Dipole Approximation: References

From [Yurkin-Hoekstra 2007]:
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Discrete Dipole Approximation: Applications

From [Okamoto-Xu 1998]:

The discrete-dipole approximation (DDA) was originally
developed by Purcell and Pennypacker (1973). The DDA has
been used in many fields, e.g., astronomy (e.g., Draine, 1988;
Kozasa et al., 1992, 1993), planetary sciences (West, 1991;
Lumme and Rahola, 1994; Okamoto et al., 1994) and atmo-
spheric sciences (e.g., Flatau et al., 1990). The DDA seems

More recently:

Nano-science, “optical tweezers”

IMSE 2014, 24/07/2014
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Fig. 14. Relative field intensity in the region comprising a simulated gold AFM probe tip in the vicinity of a 20 nm gold nanoparticle on a silicon surface,
illuminated by an evanescent wave.
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The Maxwell VIE

Volume integral equation in 2, piecewise constant coefficients

|E=1AGE + VByE + E™

with

AoE(x) = —Vdiv /Q Go(x— y)E(y) dy — 0? /Q Go(x — y)E(y) dy

BoE(x) = curI/QGw(x—y) curl E(y) dy

Two subproblems:
@ The dielectric problem (v = 0, operator Ag)
@ The magnetic problem (1 = 0, operator By,)
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Analysis of the acoustic VIE: Partial integration and extension

1. Partial integration

For simplicity, a(x) piecewise constant, k(x) constant:
alx)=a=a+1inQ, a(x)=1inRI\Q, B(x) =0.
The VIE

u(x) — div/Q Gk(x —y)a Vu(y)dy = u™(x)

becomes after integration by parts

au(x) +ak® /Q Gr(x—y)u(y) dy — audiv /r Gk(x—y)n(y) u(y)dy = u™(x)

or

au+ ak®Nxu+ aDxyu = U™  in Q

Here Ny is the Newton (volume) potential, D is the double layer potential,
and yu is the trace of u on the boundary I'.
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Analysis of the acoustic VIE: Partial integration and extension

1. Partial integration

For simplicity, a(x) piecewise constant, k(x) constant:
alx)=a=a+1inQ, a(x)=1inRI\Q, B(x) =0.
The VIE

u(x) — div/Q Gk(x —y)a Vu(y)dy = u™(x)

becomes after integration by parts

au(x) +ak® /Q Gr(x—y)u(y) dy — audiv /r Gk(x—y)n(y) u(y)dy = u™(x)

or

au+ ak®Nxu+ aDxyu = U™  in Q

Here Ny is the Newton (volume) potential, D is the double layer potential,
and yu is the trace of u on the boundary I'.

How to deal with the operator Dxy ?

Trick: Treat yu as independent unknown. — 2
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Analysis of the acoustic VIE: Partial integration and extension

2. Extension

au+ ak®?Neu+ oDgyu = U™ inQ

Taking the trace on I', we obtain a second equation with the
double layer boundary integral operator Ky

ayu+ ak®yNeu+ a3+ Ki)yu = yw™ onT
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Analysis of the acoustic VIE: Partial integration and extension

2. Extension

au+ ak®?Neu+ oDgyu = U™ inQ

Taking the trace on I', we obtain a second equation with the
double layer boundary integral operator Ky

inc

onl

ayu+ ok®yNgu+ ot( 31+ Kie)yu = yu

This gives the (2 x 2) system, triangular+compact,

Coupled boundary-domain integral equation system

all + ok® Ny oDy u\ _ [ u
ak?yNe &1+ (a—1)Kk yu )\ yue
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Analysis of the acoustic VIE: Partial integration and extension

2. Extension

au+ ak®?Neu+ oDgyu = U™ inQ

Taking the trace on I', we obtain a second equation with the
double layer boundary integral operator Ky

inc

onl

ayu+ ok®yNgu+ ot( 31+ Kie)yu = yu

This gives the (2 x 2) system, triangular+compact,

Coupled boundary-domain integral equation system
all + ak® Ny aDy u\ [ um
ak?yNe &1+ (a—1)Kk yu )\ yue

The system is Fredholm on H'(Q) x H%(F) if and only if

a
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Next case: Dielectric VIE with Smooth permittivity

The dielectric VIE

|E—AgnE=E™

with

AoE(x) = Vel | Gulx—y)E()dy—* | Gulx—y)E(y)dy

Theorem [Colton-Kress ’98]

If ¢ € C?(R?), then on the space of functions satisfying div(¢E) = 0, the
operator A, is equivalent to a weakly singular integral operator.
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Next case: Dielectric VIE with Smooth permittivity

The dielectric VIE

|E—AgnE=E™

with

AoE(x) = Vel | Gulx—y)E()dy—* | Gulx—y)E(y)dy

Theorem [Colton-Kress ’98]

If ¢ € C?(R?), then on the space of functions satisfying div(¢E) = 0, the
operator A, is equivalent to a weakly singular integral operator.

Proof: Integration by parts (n =1 —¢)

div(eE)=0 = div(nE)=divE = —%(Ve .E)

VdivGy *x (NE) = VGg xdiv(nE) = =V Gy * (% -E).
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Next case: Dielectric VIE with Smooth permittivity

The dielectric VIE

|E—AgnE=E™

with

AoE(x) = Vel | Gulx—y)E()dy—* | Gulx—y)E(y)dy

Theorem [Colton-Kress ’98]

If ¢ € C?(R?), then on the space of functions satisfying div(¢E) = 0, the
operator A, is equivalent to a weakly singular integral operator.

Proof: Integration by parts (n =1 —¢)

div(eE)=0 = div(nE)=dVE= f%(Ve ‘E)
VdivGy *x (NE) = VGg xdiv(nE) = =V Gy * (% -E).

Does not work for
discontinuous permittivity !
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A numerical spectrum [from J. Rahola SIJSC 2000]

kr=1, m=1.4+0.05"i
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Fic. 3.1. Figenvalues of the coefficient matriz for a spherical scatterer of radius kr = 1 and
refractive index m = 1.4+ 0.05i. The sphere is discretized with 136 computational cells (upper) and
480 computational cells (lower).

n=1-m?=-09575-0.14i: line ~1—1n.[0,1]
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A conjecture [quote from Fukumoto & Samokhin 2011]

imaginary part Im[)\] are parameterized by three real numbers x (€ R?), but when
€ is a constant, it degenerates to a curve connecting A = 1 and this constant value
as demonstrated by Rahola (2000) and Budko & Samokhin (2006a, 2006b). The

Translation:

Spess(Aw) - [07 1]
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A conjecture [quote from Fukumoto & Samokhin 2011]

imaginary part Im[)\] are parameterized by three real numbers x (€ R?), but when
€ is a constant, it degenerates to a curve connecting A = 1 and this constant value
as demonstrated by Rahola (2000) and Budko & Samokhin (2006a, 2006b). The

Translation:

Spess(Aw) - [07 1]

In reality:

Theorem (2 regular) [Pasciak 1984, Co 2008]

Spess(AW) = {07 %’1}
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The dielectric scattering problem: v =0

Volume integral equation: E —nAguE = E"™

Results (Co & E. Darrigrand & E.H. Koné 2009)

@ The operator A, can be extended to L2(Q) as a bounded operator.
@ It has H(curl, ) and H(div,Q) as invariant subspaces.
@ For E™ in H(curl, Q) N H(div, ), the integral equation in L? has the
same solutions as in H(curl, ) or in H(div, ).
Q Ay — Ay is compact in L2(Q).
o SP(AO) c [05 1]
0 and 1 are eigenvalues of infinite multiplicity of Ag
% is accumulation point of eigenvalues, and
SPess(Ao) = {0, 3,1} if [ is smooth

The dielectric scattering problem can be solved by solving the volume
integral equation in L?(Q).
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Analysis of Ay : Helmholtz decomposition

Orthogonal decompositions:

L2(QP=VH(QaV; V = H(div0,Q)
=VH' (Q) o Vo ; Vo = Ho(div0,Q)
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Analysis of Ay : Helmholtz decomposition

Orthogonal decompositions:
L2(QP=VH(QaV; V = H(div0,Q)
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1
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Analysis of Ay : Helmholtz decomposition

Orthogonal decompositions:
L2(QP=VH(QaV; V = H(div0,Q)
=VH' (Q) o Vo ; Vo = Ho(div0,Q)
=VH(Q@eVoeW;  W=VH'(Q)NV : harmonic vector fields

1
Recall: Agu(x :—Vdiv/ —u(y)d
ou(x) | amx YW

Lemma (Integration by parts)

UEVH(Q) = Awu=u
ue Vp— Apu=0
ue W= Awu=VS(nu)e W
S : single layer potential
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Analysis of Ay : Helmholtz decomposition

Orthogonal decompositions:
L2(QP=VH(QaV; V = H(div0,Q)
=VH' (Q) o Vo ; Vo = Ho(div0,Q)
=VH(Q@eVoeW;  W=VH'(Q)NV : harmonic vector fields

1
Recall: Agu(x :—Vdiv/ —u(y)d
ou(x) | amx YW

Lemma (Integration by parts)

UEVH(Q) = Awu=u
ue Vp— Apu=0
ue W= Awu=VS(nu)e W
S : single layer potential
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Analysis of Ay : Helmholtz decomposition

Orthogonal decompositions:
L2(Q)P =VHI(QaV; V = H(div0,Q)
=VH' (Q) @ Vo ; Vo = Ho(div0,Q)
=VH(Q@VodW;  W=VH'(Q)NV : harmonic vector fields

1
Recall: Aou(x :—Vdiv/ ——u(y)d
ou(x) a0

Lemma (Integration by parts)

UEVH(Q) = Awu=u
ue Vo= Apwu=0
ue W= Awu=VS(nu)e W
S : single layer potential

Isomorphisms: ), ., Yol =n- u|aQ c H;‘/Z(agz)

Ao {W — dhS = (%H—I— K/) |H;1’/2(9Q)
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The magnetic scattering problem: 17 = 0 (Co & E. Darrigrand & H. Sakly)

Volume integral equation: ’ E — VBy,E = E™®
Clear: The integral operator

BwE(x) :curI/S;Gw(x—y)curlE(y) dy

is bounded from H(curl, Q) to itself and to H(div0, ).
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The magnetic scattering problem: 17 = 0 (Co & E. Darrigrand & H. Sakly)

Volume integral equation: ’ E — VBy,E = E™®
Clear: The integral operator

BwE(x) = curl /Q Go(x—y)curl E(y)dy

is bounded from H(curl, Q) to itself and to H(div0, ).
Integration by parts: For E € C7(2) one has

BwE = curl G, xcurl E = curleurl G, x E
=VdivGy *E — (A4 0?)Gy * E+ ©2Gp + E
=E—-AyE

Proposition (Kirsch & Lechleiter 2010)

The operator B, can be extended from Cg(2) to L2(Q2) as a bounded
operator §w.
There holds then

By =1- Ay
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The Function Space is Important Here

Solving the volume integral equation

E - vByE=E™

in H(curl, Q) is equivalent to the magnetic Maxwell scattering problem.
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The Function Space is Important Here

Solving the volume integral equation

E - vByE=E™
in H(curl, Q) is equivalent to the magnetic Maxwell scattering problem.

Let By, : L2(Q2) — L2(R2) be the extended operator. Solving the volume
integral equation

E—vB,E = E™

in L2(2) gives the Maxwell equations in R\ I" with the transmission
conditions
[iExnlr = 0; [n-Hr = 0
[Hxnlr = 0; [n-Elr = 0
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The Function Space is Important Here

Solving the volume integral equation

E - vByE=E™
in H(curl, Q) is equivalent to the magnetic Maxwell scattering problem.

Let By, : L2(Q2) — L2(R2) be the extended operator. Solving the volume
integral equation

E—vB,E = E™

in L2(2) gives the Maxwell equations in R\ I" with the transmission
conditions
[iExnlr = 0; [n-Hr = 0
[Hxnlr = 0; [n-Elr = 0

Different problem !
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Explanation : For E € H(curl,2), one has
ByE = BwE+curI/rGw(x—y)E(y) x n(y)ds(y)

The latter term does not have a continuous extension to L%(€).

Proposition 1

The operator By, cannot be extended from H(curl, Q) to L?(Q2) as a
bounded operator.
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Explanation : For E € H(curl,2), one has
ByE = BwE+curI/rGw(x—y)E(y) x n(y)ds(y)

The latter term does not have a continuous extension to L%(€).

Proposition 1

The operator By, cannot be extended from H(curl, Q) to L?(Q2) as a
bounded operator.

| A\

Proposition 2
Although on C%'(£2) we have

Ba):]I_ACOa

the commutator of A, and By, on H(curl, ) is not even compact.

—> No joint essential spectrum of A, and By, in the Lippmann-Schwinger
operator [ — nAy — VBg.

n+v

Spess(nACO + VBUJ) 7& Spess(nAfD + V@w) = {TIN, T}
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A coupled boundary-domain integral equation system

Definition: X = H(curl,Q) N H(div0,)
For E™ € X, the equation By E = E™ is equivalent to the system

I —-VS curlS E E"
0 iI-K yaeurlS, WmE | = | vE™
0 —nVS 3I+M v<E ¥« E

with the normal trace y,u = n- u, the tangential trace v« u = n x u, the
single layer potential Sp and the magnetic field integral operator M

Mu(x) = [ n(x) x curl go(x — y)u(y) ds()
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A coupled boundary-domain integral equation system

Definition: X = H(curl,Q) N H(div0,)
For E™ € X, the equation By E = E™ is equivalent to the system

I -VS, curl$S E Eine
0 I-K teurlS, WE | =| vE™
0 —%VSy 3I+M Y<E Y« E™

with the normal trace y,u = n- u, the tangential trace y«u = n x u, the
single layer potential Sy and the magnetic field integral operator M

Mu(x) = [ n(x) x curl go(x — y)u(y) ds()

Principal symbols of boundary pseudodifferential operators
[Co & Stephan 1990]
= ellipticity = essential spectrum.

Attention: The boundary trace space is H-2 (M) x H-2 (div,T)
In order to be able to use symbols, one first has to use Helmholtz

decomposition in H-z (div,T). The boundary space becomes

H™2(F) x H2() x H2(T)
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Result for the magnetic problem (I smooth)

Result (Co & E. Darrigrand & H. Sakly 2011)
If I is smooth:

@ Sp.(Bw) = {0, %’1}

Q Spess(NAw+VBo) = {0, 1,0, %,v}

@ The Lippmann-Schwinger operator is Fredholm in H(curl, ) if and
only if

& ¢{0,—1} and u-&{0,—1}
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Result for the magnetic problem (I smooth)

Result (Co & E. Darrigrand & H. Sakly 2011)
If I is smooth:

@ Sp.(Bw) = {0, %’1}

Q Spess(NAw+VBo) = {0, 1,0, %,v}

@ The Lippmann-Schwinger operator is Fredholm in H(curl, ) if and
only if

& ¢{0,—1} and u-&{0,—1}

What if I is not smooth?

Spectrum of the boundary integral operator system

JI—K' yeurl Sy
—¥< VS %H—i—M

on a Lipschitz boundary ??
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Another coupled boundary-domain integral equation system

For E™ ¢ X = H(curl,2) NH(div0, ), the volume integral equation
(I—nAy—VvBy)E = E™ is equivalent to the system

I -nvS —veurN 0 E Eirc

0 I-19,S —vy,curlN 0 mE | | wE™

0 0 (1-v)I vVS curlE | | curlE™
0 0 0 (1=v)I+vdpS) \yncurlE yncurl E

on the space X x H*%(I') x H(div0,Q) x H*%(F).

Here N is the Newton (volume) potential and d,S = %H+ K’ is the normal
derivative of the single layer potential (for the Laplace equation).
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Another coupled boundary-domain integral equation system

For E™ ¢ X = H(curl,2) NH(div0, ), the volume integral equation
(I—nAy—VvBy)E = E™ is equivalent to the system

I -nvS —veurN 0 E Eirc

0 I-19,S —vy,curlN 0 mE | | wE™

0 0 (1-v)I vVS curlE | | curlE™
0 0 0 (1=v)I+vdpS) \yncurlE yncurl E

on the space X x H*%(I') x H(div0,Q) x H*%(F).

Here N is the Newton (volume) potential and d,S = %H+ K’ is the normal
derivative of the single layer potential (for the Laplace equation).

For I" Lipschitz, it is known that Sp. (31 -+ K’) € (0,1).
[Poincaré 1896, Steinbach & Wendland 2001, Co 2007]

Example: An edge of opening 7/2 gives a contribution [1;, % .
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Final Result

Theorem [Co-Darrigrand-Sakly 2012] For I Lipschitz:

Let & = Spe (314 K') C (0,1).
Q Spess(An) ={0,1}UT
Q Spegs(Bo) ={0,11U(1-X)
Q Sp.(NAw+VBy)={0,n,v}UnTuv(1—X)
© The Lippmann-Schwinger operator 11— 1Ay, — VB, is Fredholm in
H(curl, Q) if and only if

1 1
0 and X X
&4, #0 an 17&¢,17M¢
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Thank you for your attention!
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