The inf-sup constant of the divergence

Martin Costabel

Collaboration with Monique Dauge with contributions from C. Bernardi, V. Girault, M. Crouzeix, Y. Lafranche

IRMAR, Université de Rennes 1

Mafelap 2013 Brunel University, 11–14 June 2013

The inf-sup Constant: Definition

 $Ω$ bounded domain $ℝ^d$ ($d ≥ 1$). No regularity assumptions.

The inf-sup constant of
$$
\Omega
$$

\n
$$
\beta(\Omega) = \inf_{q \in L_{\circ}^{2}(\Omega)} \sup_{v \in H_{0}^{1}(\Omega)^{d}} \frac{\int_{\Omega} \text{div} \, v \, q}{|v|_{1} \|q\|_{0}}
$$

- $L^2(\Omega)$ space of square integrable functions *q* on Ω . Norm $||q||$ ₀
- *H*¹(Ω) Sobolev space of *v* ∈ *L*²(Ω) with gradient $∇$ *v* ∈ *L*²(Ω)^{*d*}
- *L* 2 $\frac{2}{\circ}(\Omega)$ subspace of $q \in L^2(\Omega)$ with $\int_{\Omega} q = 0$.
- $H_0^1(\Omega)$ closure in $H^1(\Omega)$ of $C_0^{\infty}(\Omega)$ (zero trace on $\partial\Omega$) (Semi-)Norm $\left|u\right|_{|1}=\left\|\nabla u\right\|_{|0}$ equivalent to norm $\left\|u\right\|_{H^1(\Omega)}$

 $\beta(\Omega)$ is invariant with respect to translations, rotations, dilations.

The inf-sup Constant: A Simple Example

The square
$$
\Omega = (0,1) \times (0,1) =: \square \subset \mathbb{R}^2
$$

The Square

[Question] : What is $\beta(\Box)$? [Answer] : Unknown !

Conjecture 1 [Horgan-Payne 1983]

$$
\beta(\square)^2=\frac{2}{7}\approx 0.2857... \qquad (\rightarrow \ \beta(\square)\approx 0.5345)
$$

C. O. HORGAN AND L. E. PAYNE, *On inequalities of Korn, Friedrichs and Babuška-Aziz*. Arch. Rational Mech. Anal., **82** (1983), pp. 165–179.

Conjecture 2 [current]

$$
\beta(\square)^2 = \frac{1}{2} - \frac{1}{\pi} \approx 0.18169... \quad (\rightarrow \beta(\square) \approx 0.42625)
$$
\nWhy not simply compute it ?

\nMethode, 14 June 2013 3/58

The inf-sup Constant: A Finite Element Computation

Outline

[0]

[The inf-sup constant](#page-1-0)

- **A** [Definition](#page-1-0)
- [Relations 1: Lions' lemma](#page-5-0)
- [Relations 2: Right inverse of the divergence](#page-6-0)
- [Relations 3: Korn's inequality](#page-9-0)
- [Relations 4: The Cosserat eigenvalue problem](#page-10-0)
- [Relations 5: The Stokes system](#page-12-0)
- [Relations 6: Corner singularities](#page-15-0)
- [Some computations for rectangles](#page-17-0)
- ² [Upper and lower bounds](#page-37-0)
	- [Relations 7: Singular integral operators](#page-38-0)
	- [Relations 8: Friedrichs' inequality](#page-47-0)
	- [The Horgan-Payne inequality](#page-49-0)
	- [A counterexample](#page-52-0)

Relations 1: Lions' lemma

H^{−1}(Ω) dual space of *H*₀¹(Ω) with dual norm $|\cdot|_{-1}$: For $q \in L^2_{\circ}$ $\frac{2}{\circ}(\Omega)$:

$$
|\nabla q|_{-1}=\sup_{{\pmb \nu}\in H^1_0(\Omega)^d}\frac{\left\langle \nabla {\pmb q},{\pmb \nu}\right\rangle_{\Omega}}{\left|{\pmb \nu}\right|_{1}}=\sup_{{\pmb \nu}\in H^1_0(\Omega)^d}\frac{\int_\Omega \text{div}\,{\pmb \nu}\,{\pmb q}}{\left|{\pmb \nu}\right|_{1,\Omega}}
$$

$$
\beta(\Omega) = \inf_{q \in L^2(\Omega)} \frac{|\nabla q|_{-1}}{\|q\|_0}
$$

Lemma [Lions 1958, unpublished[∗], for smooth domains] [Nečas 1967, for Lipschitz domains]

$$
||q||_0^2 \leq C(\Omega) |\nabla q|_{-1}^2 \qquad \forall q \in L^2_{\circ}(\Omega)
$$

∗ According to [E. Magenes and G. Stampacchia 1958].

$$
\rightarrow \qquad {\cal C}(\Omega) = \frac{1}{\beta(\Omega)^2}
$$

Lions' Lemma $\Longleftrightarrow \nabla : L^2(\Omega) \rightarrow H^{-1}(\Omega)^d$ is injective with closed range \Leftrightarrow div : $H_0^1(\Omega)^d \to L_\infty^2$ $\frac{2}{\circ}(\Omega)$ is surjective

Babuška-Aziz inequality [Babuška-Aziz 1971], named by [Horgan-Payne 1983]

Ω Lipschitz, *^q* ∈ *^L* 2 $\frac{2}{a}$ (Ω) \implies \exists **v** ∈ H₀¹(Ω)^d : div **v** = q $|\mathbf{v}|_1^2$ $\frac{2}{1} \leq C(\Omega) \|q\|_0^2$ 0

Equivalence for a domain $Ω$:

 $\beta(\Omega) > 0 \Longleftrightarrow$ Lions' lemma \Longleftrightarrow Babuška-Aziz inequality

This condition (and its discrete counterpart) is called inf-sup condition or LBB condition, after

- **L**adyzhenskaya [?]
- **Babuška** [Babuška 1971-73]
- **B**rezzi [Brezzi 1974]

Lions' Lemma $\Longleftrightarrow \nabla : L^2(\Omega) \rightarrow H^{-1}(\Omega)^d$ is injective with closed range \Leftrightarrow div : $H_0^1(\Omega)^d \to L_\infty^2$ $\frac{2}{\circ}(\Omega)$ is surjective

Babuška-Aziz inequality [Babuška-Aziz 1971], named by [Horgan-Payne 1983]

Ω Lipschitz, *^q* ∈ *^L* 2 $\frac{2}{a}$ (Ω) \implies \exists **v** ∈ H₀¹(Ω)^d : div **v** = q $|\mathbf{v}|_1^2$ $\frac{2}{1} \leq C(\Omega) \|q\|_0^2$ 0

Equivalence for a domain $Ω$:

 $\beta(\Omega) > 0 \Longleftrightarrow$ Lions' lemma \Longleftrightarrow Babuška-Aziz inequality

This condition (and its discrete counterpart) is called inf-sup condition or LBB condition, after

- **L**adyzhenskaya Added by J. T. Oden ca 1980, on suggestion by J.-L. Lions
- **Babuška** [Babuška 1971-73]
- **B**rezzi [Brezzi 1974]

Relations 3: Korn's inequality

If the LBB condition is satisfied for Ω , Korn's inequality follows:

$$
\partial_i \partial_j u_k = \partial_i \varepsilon_{jk} + \partial_j \varepsilon_{jk} - \partial_k \varepsilon_{ij}, \qquad \varepsilon = \frac{1}{2} (\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^\top)
$$

$$
\Longrightarrow \left|\nabla \nabla \boldsymbol{u}\right|_{-1} \sim \left|\nabla \boldsymbol{\varepsilon}\right|_{-1} \Longrightarrow \left\|\nabla \boldsymbol{u}\right\|_{0} \sim \left\|\boldsymbol{\varepsilon}\right\|_{0}
$$

Korn's second inequality

If ∇ *u* − $(\nabla$ *u*)^T ∈ L_{\circ}^2 ${}_{\circ}^{2}(\Omega)$, then

> $\left\Vert \nabla\boldsymbol{u}\right\Vert _{0}^{2}$ $\frac{2}{0} \leq K(\Omega) {\lVert \varepsilon \rVert}^2_0$ 0

Relations 4: The Cosserat eigenvalue problem

[E.&F. Cosserat 1898]

Find $\boldsymbol{u} \in H_0^1(\Omega) \setminus \{0\}$, $\sigma \in \mathbb{C}$ such that

 $\sigma \Delta u - \nabla$ div *u* = 0.

Aim: Solving the Lamé Dirichlet problem by eigenfunction expansion.

Equivalent eigenvalue problems:

$$
\Delta^{-1} \nabla \operatorname{div} \boldsymbol{u} = \sigma \boldsymbol{u} \qquad \text{in } H_0^1(\Omega)^d
$$

or, for $\sigma \neq 0$:

$$
\text{div}\,\Delta^{-1}\nabla q = \sigma q \qquad \text{in } L^2(\Omega).
$$

Definition: Cosserat operator $\mathcal{J} = \text{div}\,\Delta^{-1}\nabla$ Selfadjoint, positive, ≤ 1 .

This is not an elliptic eigenvalue problem! $\sigma = 1$ has infinite multiplicity

$$
q = \Delta \phi, \, \phi \in H_0^2(\Omega) \Rightarrow \Delta^{-1} \nabla q = \nabla \phi \Rightarrow \mathscr{S} q = q.
$$

Cosserat eigenfunctions [E.&F. Cosserat 1898]

For ellipsoids, the Cosserat eigenvalue problem can be solved explicitly. If Ω is the unit ball, one has: Let *q* be a harmonic polynomial, homogeneous of degree *k*, then

$$
\mathscr{S}q = \sigma_k q \qquad \text{with} \ \sigma_k = (2 + \frac{d-2}{k})^{-1}
$$

Define $\sigma(\Omega) = \min(\text{Spectrum }\mathscr{S})$

Ball in
$$
\mathbb{R}^d
$$
: $\sigma(\Omega) = \frac{1}{d}$.

A simple relation

 $\sigma(\Omega) = \beta(\Omega)^2$.

 $Proof: -Δ: H₀¹(Ω) → H⁻¹(Ω)$ is the Riesz isometry. Let $q ∈ L_o²$ $\frac{2}{\circ}(\Omega)$

$$
\left\langle Sq,q\right\rangle _{\Omega}=\left\langle \text{div}\,\Delta^{-1}\nabla q,q\right\rangle _{\Omega}=\left\langle \nabla q,-\Delta^{-1}\nabla q\right\rangle _{H^{-1}\left(\Omega\right)^{d},H_{0}^{1}\left(\Omega\right)^{d}}=\left|\nabla q\right|_{-1}^{2}
$$

$$
\sigma(\Omega) = \inf_{q \in L^2_{\circ}(\Omega)} \frac{\langle Sq, q \rangle_{\Omega}}{\langle q, q \rangle_{\Omega}} = \inf_{q \in L^2_{\circ}(\Omega)} \frac{|\nabla q|^{\frac{2}{\alpha-1}}}{\|q\|_{0}^{\frac{2}{\alpha}}} = \frac{1}{C(\Omega)} = \beta(\Omega)^2
$$

Relations 5: Cosserat and Stokes

The Stokes system

Find $\boldsymbol{u} \in H_0^1(\Omega)$, $p \in L^2_{\infty}$ $\frac{2}{\circ}(\Omega)$:

> $-\Delta$ *u* + ∇p = **f** in Ω $div \mathbf{u} = 0$ in Ω

The Cosserat operator $\mathscr S$ is the Schur complement of the Stokes system: The pressure *p* satisfies the equation

 $\mathscr{S} p = \text{div} \, \Delta^{-1} f.$

The Cosserat operator is the error reduction operator in Uzawa's iterative algorithm...

The Cosserat eigenvalue problem is a Stokes eigenvalue problem

Find $\boldsymbol{u} \in H_0^1(\Omega)$, $p \in L^2_{\infty}$ $\mathcal{L}^2_\circ(\Omega) \setminus \{0\}, \sigma \in \mathbb{C}$:

> $-\Delta u + \nabla p = 0$ in Ω div $\mathbf{u} = \sigma \rho$ in Ω

Relations 5: Cosserat and Stokes

An exercise: For fixed *q* ∈ *L* 2 $\frac{2}{\circ}$ (Ω), the sup *v* ∈*H* 1 0 (Ω)*^d* \langle div *v*,*q* \rangle |*v*| 1 is attained for $\mathbf{v} = \mathbf{v}^{(0)} = \Delta^{-1} \nabla q$.

$$
\beta(\Omega) = \inf_{q \in L^2(\Omega)} \frac{1}{\|q\|_0} \frac{\langle \operatorname{div} \mathbf{v}^{(0)}(q), q \rangle}{\left| \mathbf{v}^{(0)}(q) \right|_1}
$$

On the other hand, for $\mathbf{v} = \mathbf{v}^{(1)} \in H_0^1(\Omega)^d$, solution of

 $-\Delta v + \nabla p = 0$ in Ω

 div *v* = *q* in Ω

there holds

$$
\beta(\Omega) = \inf_{q \in L_{\circ}^{2}(\Omega)} \frac{1}{\|q\|_{0}} \frac{\langle \operatorname{div} \mathbf{v}^{(1)}(q), q \rangle}{\left| \mathbf{v}^{(1)}(q) \right|_{1}}
$$

Show that for $q \in L^2_{\infty}$ $\frac{2}{3}(\Omega)$

$$
\frac{\langle \operatorname{div} {\bf v}^{(0)}(q), q \rangle}{\left| {\bf v}^{(0)}(q) \right|_1} = \frac{\langle \operatorname{div} {\bf v}^{(1)}(q), q \rangle}{\left| {\bf v}^{(1)}(q) \right|_1}
$$

if and only if *q* is a Cosserat eigenfunction.

For $\sigma \notin \{0, \frac{1}{2}, 1\}$, the operator $A_{\sigma} = -\sigma \Delta + \nabla$ div is elliptic. If $\Omega \subset \mathbb{R}^2$ has a corner of opening ω , one can therefore determine the corner singularities via Kondrat'ev's method of Mellin transformation: Look for solutions of the form $r^{\lambda} \phi(\theta)$ in a sector. $\rightarrow q \sim r^{\lambda-1} \phi(\theta)$ Characteristic equation (Lamé system, known!) for a corner of opening ω :

$$
(*)\qquad \qquad (1-2\sigma)\frac{\sin \lambda \omega}{\lambda}=\pm \sin \omega.
$$

Theorem [Kondrat'ev 1967]

For $\sigma \in [0,1] \setminus \{0,\frac{1}{2},1\}$, $A_{\sigma} : H_0^1(\Omega) \to \mathsf{H}^{-1}(\Omega)$ is Fredholm iff the equation (*) has no solution on the line \Re e $\lambda = 0$.

With $z = \lambda \omega$, we rewrite $(*)$:

$$
(1-2\sigma)\frac{\sin z}{z}=\pm\frac{\sin\omega}{\omega}.
$$

Result :

- \bullet (*) has roots on the line \Re e $\lambda = 0$ iff $|1-2\sigma|\omega|$ sin ω
- \bullet If $|1-2\sigma|\omega>|\sin \omega|$, there is a root $\lambda \in (0,1)$

Theorem [Co & Dauge ca 2000]

 $\Omega \subset \mathbb{R}^2$ piecewise smooth with corners of opening $\omega_j.$

$$
Sp_{\textrm{ess}}(\mathscr{S})=\bigcup_{\textrm{corners } j}\big[\tfrac{1}{2}-\tfrac{|\textrm{sin}\omega_j|}{2\omega_j},\tfrac{1}{2}+\tfrac{|\textrm{sin}\omega_j|}{2\omega_j}\big]\,\cup\,\{1\}
$$

Figure: Essential spectrum: $σ$ vs. opening $ω$

Rectangle, aspect ratio 0.4 First 2 Cosserat eigenvalues

Rectangle: Convergence of first 16 eigenvalues, *p* version

Rectangle, aspect ratio 0.4 First 13 Cosserat eigenvalues, (*Q^k* ,*Qk*−³)

Rectangle: Convergence of first 13 eigenvalues, *p* version

Rectangle, aspect ratio 0.4

First 13 Cosserat eigenvalues, (*Q^k* ,*Qk*−¹) "Taylor-Hood"

Degrees: 15,12

Square: First eigenfunction, (*Q*17,*Q*16)

Square: First eigenfunction, (*Q*17,*Q*16)

Square: First eigenfunction, (*Q*17,*Q*16)

Square: Fourth eigenfunction, (*Q*17,*Q*16)

Square: Fourth eigenfunction, (*Q*17,*Q*16)

Upper and lower bounds

Let $\Omega \subset \mathbb{R}^d$ be starshaped with respect to a ball *B* and $\omega \in C_0^{\infty}(B)$ be such that $\int \omega = 1$.

Define $\mathbf{T}p(x) = \int_{\Omega} \mathbf{G}(x, y)p(y) dy$ with

$$
\mathbf{G}(x,y) = \frac{\mathbf{x} - \mathbf{y}}{|x - y|^d} \int_{|x - y|}^{\infty} \omega\left(y + t\frac{x - y}{|x - y|}\right) t^{d-1} dt
$$

Then **T** : L_{\circ}^2 $\mathcal{L}^2_{\circ}(\Omega) \to H^1_0(\Omega)^d$ is continuous and div **T***p* = *p* (right inverse!).

Explanation :

The adjoint operator T′ is the regularized Poincaré path integral

$$
\mathsf{T}'\boldsymbol{u}(x) = \int_B \omega(a) \int_a^x \boldsymbol{u} \cdot d\mathbf{s} \, da = \int_B \omega(a) (\boldsymbol{x} - \boldsymbol{a}) \cdot \int_0^1 \boldsymbol{u}(a + t(x - a)) \, dt \, da
$$

satisfying $\mathsf{T}'\nabla p(x) = p(x) - \int_B p(a) \omega(a) \, da$ (left inverse on $L^2(\Omega)/\mathbb{R}$)

Lemma [Co&McIntosh 2010]

T and T' are pseudodifferential operators on \mathbb{R}^d of order -1 . $\forall s \in \mathbb{R}: \quad \mathsf{T}: \widetilde{H}^s(\Omega) \to \widetilde{\boldsymbol{H}}^{s+1}(\Omega) \text{ and } \mathsf{T}': \boldsymbol{H}^s(\Omega) \to H^{s+1}(\Omega)$

Bogovskii's integral operator

Support properties:

- For $x \in \Omega$, T' $\boldsymbol{u}(x)$ depends only on $\boldsymbol{u}\big|_{\Omega}$
- • If $p = 0$ on $\mathbb{R}^d \setminus \Omega$, then **T** $p = 0$ on $\mathbb{R}^d \setminus \Omega$.

Theorem [Bogovskiı̆ 1979], [Galdi 1994]

Let $\Omega \subset \mathbb{R}^n$ be contained in a ball of radius *R*, starshaped with respect to a concentric ball of radius ρ . There exists a constant γ_d only depending on the dimension *d* such that

> $\beta(\Omega)\geq \gamma_d \ \Big(\frac{\rho}{B}\Big)$ *R* \bigwedge ^{d+1}

Corollary

Let Ω be a finite union of bounded starshaped domains.

Then $\beta(\Omega) > 0$.

This includes all bounded Lipschitz domains, possibly with cracks.

In dimension $d = 2$, we can prove

$$
\beta(\Omega)\geq \frac{\rho}{2R}
$$

M. COSTABEL, M.DAUGE: On the inequalities of Babuška-Aziz, Friedrichs and Horgan-Payne. arXiv 2013.

John domains

Theorem [Acosta-Durán-Muschietti 2006], [Durán 2012]

Let $\Omega \subset \mathbb{R}^d$ be a bounded John domain. Then $\beta(\Omega) > 0$.

Figure: Not a John domain: Outward cusp, $\beta(\Omega) = 0$ [Friedrichs 1937]

Definition

A domain $\Omega \subset \mathbb{R}^d$ with a distinguished point \mathbf{x}_0 is called a John domain if it satisfies the following "twisted cone" condition: There exists a constant $\delta > 0$ such that, for any **y** in Ω , there is a rectifiable curve γ: $[0, \ell] \rightarrow \Omega$ parametrized by arclength such that

 $\gamma(0) = \mathbf{v}$, $\gamma(\ell) = \mathbf{x}_0$, and $\forall t \in [0, \ell] : \text{dist}(\gamma(t), \partial \Omega) \ge \delta t$.

Here dist($\gamma(t),\partial\Omega$) denotes the distance of $\gamma(t)$ to the boundary $\partial\Omega$.

Example : Every weakly Lipschitz domain is a John domain.

A John domain: Union of Lipschitz domains

A John domain: Zigzag

Figure: A weakly Lipschitz domain: the self-similar zigzag

Figure: Weakly Lipschitz (left), John domain (right)

Fractal John domains: Tree or Lung

Figure: A John domain: the infinite tree

Friedrichs' inequality [named by Horgan-Payne 1983]

Let $\Omega \subset \mathbb{R}^2$ be a bounded piecewise smooth domain with no outward cusps. There exists a constant $Γ(Ω)$ such that for any holomorphic $f + ig \in L^2_{\circ}$ $\frac{2}{\circ}(\Omega)$ there holds

> $\|f\|_0^2$ $\frac{2}{0} \leq \Gamma(\Omega) \|g\|_0^2$ 0

Theorem [H-P 1983 for $\Omega \in C^2$], [Co-Dauge 2013 without smoothness condition]

For any bounded domain $\Omega \subset \mathbb{R}^2$

1 $rac{1}{\beta(\Omega)^2} = \Gamma(\Omega) + 1$.

Friedrichs \Longleftrightarrow LBB

Sketch of Proof:

If $\beta(\Omega) > 0$ and $f + ig \in L^2_{\circ}(\Omega)$ holomorphic, then one uses the ◦ Babuška-Aziz inequality and

$$
\langle f, \operatorname{div} \mathbf{u} \rangle_{\Omega} = -\langle g, \operatorname{curl} \mathbf{u} \rangle_{\Omega}
$$

to show that $\left\Vert f\right\Vert _{0}^{2}$ $\frac{2}{0}\leq (C(\Omega)-1)\left\|g\right\|_{0}^{2}$ $^{\circ}$

Conversely, if $p \in L^2_{\circ}$ $\frac{2}{\circ}(\Omega)$ is given, define

$$
\mathbf{u} = \Delta^{-1} \nabla p
$$
, $q = \text{div } \mathbf{u}$ and $g = \text{curl } \mathbf{u}$

Then one can see that *g* and *q* −*p* are conjugate harmonic functions in *L* 2 $\binom{2}{\circ}$ (Ω) and that the Friedrichs inequality implies

$$
\|\rho\|_0^2 \leq \left(\Gamma(\Omega)+1\right)\left|\nabla\rho\right|_{-1}^2.
$$

Let $\Omega \subset \mathbb{R}^2$ be star-shaped with respect to a ball. Boundary in polar coordinates

$$
r = f(\theta)
$$
 with *f* Lipschitz, $\max_{\theta \in [0, 2\pi]} f(\theta) = 1$.

Define the angle $\gamma(\theta)$ between the radius vector and the normal vector

tan $\gamma(\theta) = \frac{f'(\theta)}{f(\theta)}$ *f*(θ)

Set

$$
P(\alpha, \theta) = \frac{1}{\alpha f(\theta)^2} \left(1 + \frac{\tan^2 \gamma(\theta)}{1 - \alpha f(\theta)^2} \right)
$$

$$
M(\Omega) := \inf_{\alpha \in (0,1)} \left\{ \sup_{\theta \in [0,2\pi]} P(\alpha, \theta) \right\}; \quad m(\Omega) = \sup_{\theta \in [0,2\pi]} \left\{ \inf_{\alpha \in \left(0, \frac{1}{f(\theta)^2}\right)} P(\alpha, \theta) \right\}
$$

The Horgan-Payne inequality

$$
P(\alpha, \theta) = \frac{1}{\alpha f(\theta)^2} \left(1 + \frac{\tan^2 \gamma(\theta)}{1 - \alpha f(\theta)^2} \right)
$$

$$
M(\Omega) := \inf_{\alpha \in (0,1)} \left\{ \sup_{\theta \in [0,2\pi]} P(\alpha, \theta) \right\}; \qquad m(\Omega) = \sup_{\theta \in [0,2\pi]} \left\{ \inf_{\alpha \in \left(0, \frac{1}{f(\theta)^2}\right)} P(\alpha, \theta) \right\}
$$

Definition: The Horgan-Payne angle [Stoyan 2001]

$$
\omega(\Omega) = \frac{\pi}{2} - \max |\gamma(\theta)|
$$

Minimal angle between radius vector and tangent.

$$
[\mathsf{HPI}] \iff \Gamma(\Omega) \leq m(\Omega) \iff \left\vert \beta(\Omega) \geq \sin \frac{\omega(\Omega)}{2} \right\vert
$$

Theorem [Co-Dauge 2013]

1 For circles, ellipses, polygons that have a circumscribed or inscribed circle, hence for all triangles, rectangles, regular polygons:

$$
m(\Omega)=M(\Omega)
$$

² There exist domains for which the Horgan-Payne inequality does not hold.

, \sim \sim

 $\overline{}$

 $\overline{}$

² | ⇡ \sim

 $f(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dx}{(x-x)^2} dx$

Theorem [Co-Dauge 2013]

 T important observation is the T important Ω is constant along the boundary curve, Ω is constant along the boundary curve, Ω is curve, Ω is curve, Ω is curve, Ω is constant as Ω is constant as Ω Let $\Omega \in \mathbb{R}^2$ be a disjoint union of Ω_-, Ω_+ and a segment Σ of length *L*. $|O\rangle$ Then

Then

$$
\beta(\Omega)^2 \leq \frac{8}{3} \frac{|\Omega|}{|\Omega_+||\Omega_-|} L^2.
$$

The constant δ can probabl ² sin² !(⌦) The constant $\frac{8}{3}$ can probably be improved to $\frac{\pi}{16}$ [with M. Crouzeix]. $\frac{1}{2}$

 $\overline{}$

 $\overline{}$

^r ^d^r ^d✓ ⁼ ¹ ^ec⇡

2 .

Horgan-Payne angle: $\omega(\Omega) = \arctan \frac{1}{c}$ Horgan-Payne inequality:

$$
\beta(\Omega)^2 \ge \frac{\sqrt{c^2+1} - c}{2\sqrt{c^2+1}} = \frac{1}{4c^2} + O(c^{-4})
$$
 as $c \to \infty$.

Upper bound

$$
\beta(\Omega)^2 \leq \frac{128}{3} \frac{c e^{-c\pi}}{1 - e^{-c\pi}} \qquad \left[\frac{128}{3} \rightarrow \pi\right]
$$

Cupid's Bow

Cupid's Bow

Cupid's Bow

Open Problems

- **1** Is $\beta(\Box)^2 = \frac{1}{2} \frac{1}{\pi}$?
- 2 How to compute $β(Ω)$ reliably? Special elements?
- Stability of $\beta(\Omega)$ with respect to perturbations of the domain. OK for C^2 perturbations. What about $W^{1,\infty}$ perturbations?
- ⁴ Equivalence with Korn's inequality.

Thank you for your attention!