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From the WEB. Google search for “function spaces are important”

Function spaces are important and natural examples of
abstract Banach lattices http://eom.springer.de

However. . .

Introducing Function Space Yielding

Are you already optimizing your revenues and profits on your
function space? The workshop will show you practical techniques how
to calculate the price you should quote, not leaving any money on the table.
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The Dirichlet problem

Ω: bounded polygon or polyhedron

(Dir) ∆u = f in Ω, u = 0 on ∂ Ω

One can consider (Dir) in
Sobolev spaces Hs(Ω),W m

p (Ω)
Besov spaces Bs

p,q(Ω)
Hölder spaces Cα (Ω)

with or without weight W m,~β ,~δ
p (Ω)

etc.

In some of these spaces

there is no existence result (Example: H2(Ω), nonconvex Ω)

there is no uniqueness result (Example: L2(Ω), nonconvex Ω)

There is, however, a sanity result...
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The Dirichlet problem

Observation

Let X1 and X2 be two “reasonable” function spaces on Ω from the
afore-mentioned list.

Let f ∈∆X1∩∆X2 and let u1 ∈ X1, u2 ∈ X2 both be solutions of (Dir).

If X1 and X2 are such that in both spaces the homogeneous Dirichlet
problem has only the trivial solution,

then u1 = u2 .

=⇒ Function spaces are
useful: description of singularities, stability, error estimates, . . . ,
but not really important.
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Time-harmonic Maxwell equations

curlE = iωµH

curlH =−iωεE + J

In this section: Domain Ω⊂ R3, ε = µ = 1, J = 0.
The condition divE = divH = 0 follows if ω 6= 0.

E×n = 0 & H ·n = 0 on ∂ Ω

Eigenfrequencies of a cavity with perfectly conducting walls.
Second order system for E : curlcurlE−ω2E = 0

Simplest variational formulation

Find ω 6= 0, E ∈ H0(curl,Ω)\{0} such that

∀F ∈ H0(curl,Ω) :
∫

Ω
curlE ·curlF = ω

2
∫

Ω
E ·F

Energy space: H0(curl,Ω) = {u ∈ L2(Ω) | curlu ∈ L2(Ω);u×n = 0}
= closure in H(curl,Ω) of C∞

0 (Ω)3
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Regularized formulation

Simple variational formulation

E ∈H0(curl,Ω)\{0} : ∀F ∈H0(curl,Ω) :
∫

Ω
curlE ·curlF = ω

2
∫

Ω
E ·F

Galerkin discretization:
Restriction to finite-dimensional subspace Vh, h→ 0.

Good: Eigenfrequencies are non-negative, discrete.
Big Problem: ω = 0 has infinite multiplicity
Kernel: Electrostatic fields: gradients of all φ ∈ H1

0 (Ω) (+ harmonic forms).

Idea: divE = 0, so we can add a multiple of 0 =
∫

Ω divE divF

Regularized formulation: E ∈ X N \{0} : ∀F ∈ X N :

(RegX )
∫

Ω
curlE ·curlF + s

∫
Ω

divE divF = ω
2
∫

Ω
E ·F

Energy space: X N = H0(curl,Ω)∩H(div,Ω)
Second order system: curlcurlE−s∇divE = ω2E : Strongly elliptic. OK
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Approximation on the square Ω = (0,π)× (0,π), s = 0

Good approximation: Triangular edge elements (15 nodes per side, P1)
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Eigenvalue ω2
k vs. rank k
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Approximation on the square Ω = (0,π)× (0,π), s = 0

Bad approximation: Nodal triangular elements (15 nodes per side, P1)
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Regularized formulation in the square
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ω[s]2 vs. s

Blue circles: computed ω[s]2 with curl-dominant eigenfunctions.
Red stars: computed ω[s]2 with div-dominant eigenfunctions.
divE satisfies s∆divE = ω2 divE
Extra eigenvalues: s times Dirichlet eigenvalues.
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Regularized formulation in the “L”
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Gray triangles: computed ω[s]2 with indifferent eigenfunctions.
Cyan-Lines: true Maxwell eigenvalues

Martin Costabel (Rennes) Importance of function spaces for Maxwell equations Waves 2011, Vancouver 29/07/2011 13 / 48



Regularized formulation in the “L”

Error of the first eigenvalue
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Interp 1

Interp 2

Interp 3

Interp 4

Interp 5

Valeur propre Maxwell n°  1 pénalisée au bord par  λ  = 101 ;  Maillage  1

Error vs. number of d.o.f.

Error remains
larger than 90%.
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Solution of the source problem, regularized formulation

Exact solution
(2nd component E2 = r−

1
3 cos θ

3 )).
Computation with Q3 elements.

curlcurlE−∇divE = 0 in Ω; E×n = E0 on ∂ Ω
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A Tale of Two Function Spaces

An integration by parts formula (Co 1991)

Let Ω⊂ R3 be a polyhedron. Let u ∈ X N . If u ∈ H1(Ω), then∫
Ω
|∇u|2 =

∫
Ω
|curlu|2 +

∫
Ω
|divu|2

Corollary

1 Define HN = X N ∩H1(Ω). Then HN is a closed subspace of X N .
If Ω is non-convex, then HN 6= X N .

2 For s > 0, the sesquilinear form

as(E,F ) =
∫

Ω
curlE ·curlF + s

∫
Ω

divE divF

is HN -elliptic.
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Two Regularized Variational Formulations

Regularized formulation: E ∈ X N : ∀F ∈ X N :

(RegX )
∫

Ω
curlE ·curlF + s

∫
Ω

divE divF −ω
2
∫

Ω
E ·F =

∫
Ω

J ·F

Regularized formulation: E ∈ HN : ∀F ∈ HN :

(RegH )
∫

Ω
curlE ·curlF + s

∫
Ω

divE divF −ω
2
∫

Ω
E ·F =

∫
Ω

J ·F

Consequence (For J ∈ L2(Ω), Ω⊂ R3 polyhedron)

1 If ω2 is not an eigenvalue, then both (RegX ) and (RegH ) have a
unique solution.

2 Both are solutions of the boundary value problem

curlcurlE−s∇divE−ω
2E = J in Ω; E×n = 0 on ∂ Ω

3 If Ω is non-convex, then the two solutions are different, in general.
The eigenvalues of (RegX ) and (RegH ) are different, in general.
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The role of the divergence

In the regularized variational formulation

(RegH )
∫

Ω
curlE ·curlF + s

∫
Ω

divE divF −ω
2
∫

Ω
E ·F =

∫
Ω

J ·F

one gets an equation for divE by testing with gradients: F = ∇ψ .

s
∫

Ω
divE ∆ψ−ω

2
∫

Ω
E ·∇ψ =

∫
Ω

J ·∇ψ

⇐⇒
∫

Ω
divE

(
s∆ψ + ω

2
ψ
)

=−
∫

Ω
divJ ψ

For (RegX ) one takes ψ ∈ H1
0 (∆,Ω).

For (RegH ) one takes ψ ∈ H1
0 (Ω)∩H2(Ω).

Lemma

Let divJ = 0 and ω2

s not a Dirichlet eigenvalue.
For a solution E of (RegH ) there holds:
If divE ∈ H1(Ω), then divE = 0,
and then E is a solution of (RegX ) and hence of the Maxwell problem.
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Non-density of smooth functions

The space HN is the completion of

{u ∈ C∞(Ω) | u×n = 0 on ∂ Ω}

under the norm of H0(curl)∩H(div)

‖u‖2
X =

∫
Ω
|curlu|2 +

∫
Ω
|divu|2

HN 6= X N means that smooth functions are not dense in X N .
Finite element functions, which are piecewise polynomials on a
triangulation of Ω, belong to HN as soon as they belong to X N .

Consequence

Any Maxwell solution or eigenfunction that does not belong to H1(Ω)
cannot be approximated by an X N -conforming finite element method that
uses the regularized variational formulation.
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The Weighted Regularization Method (Co & Dauge 2002)

Idee : Replace the L2 norm in the regularizing term s
∫

Ω divE divF by a
weighted L2 norm.

Weighted Regularized formulation: E ∈ X w
N : ∀F ∈ X w

N :

(Regw
H )

∫
Ω

curlE ·curlF + s
∫

Ω
w divE divF −ω

2
∫

Ω
E ·F =

∫
Ω

J ·F

Definition : X w
N = {u ∈ H0(curl,Ω) |

∫
Ω w |divu|2 < ∞}

We choose
w(x) =

(
dist(x ,S)

)α

where S is the set of singular points (edges, corners) on the boundary.

Lemma

There exists α0(Ω) < 2 such that
For α0(Ω) < α < 2 : Smooth functions are dense in X w

N
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The Weighted Regularization Method (Co & Dauge 2002)

Theorem

For α0(Ω) < α < 2 :

If
ω2

s
is not an eigenvalue of the Dirichlet problem for the

weighted Laplacian divw∇

then the solutions E of the weighted regularized problem (Regw
H ) satisfy

divE = 0 and are solutions of the Maxwell problem.

Numerical evidence follows...
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The L shape, WRM ω[s]2 vs. s
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The L shape, WRM ω[s]2 vs. s
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The L shape, WRM Error of the first eigenvalue
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Recent developments: Mixed formulations

[Buffa-Jamelot-Ciarlet 2009] E ∈ X w
N , p ∈ L2,w : ∀F ∈ X w

N , q ∈ L2,w :∫
Ω

curlE ·curlF + s
∫

Ω
w divE divF −ω

2
∫

Ω
E ·F +

∫
Ω

w p divF =
∫

Ω
J ·F∫

Ω
w q divE= 0

[Bonito-Guermont 2011] E ∈ X−α , p ∈ H1
0 : ∀F ∈ X−α , q ∈ H1

0 :∫
Ω

curlE ·curlF +
(

divE,divF
)
−α

−ω
2
∫

Ω
E ·F +

∫
Ω

∇p ·F =
∫

Ω
J ·F∫

Ω
∇q ·E +

(
p,q
)

α−1= 0

Here 1
2 < α < 1.

Discretization of H−α (Ω) scalar product:(
ph,qh

)
−α
∼ h2α

∫
Ω

ph qh
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The Electrical Field Integral Equation

Time-harmonic Maxwell transmission problem:

curlE = iωH ; curlH = −iωE in R3 \Γ
[E×n]Γ = 0 ; [n ·H]Γ = 0 on Γ

iω[H×n]Γ = j ; [n ·E]Γ = m on Γ
+ radiation condition

Representation formula, with Gω (x) =
eiω|x |

4π|x |
:

E(x) =
∫

Γ
Gω (x−y)j(y)ds(y) + ∇

∫
Γ

Gω (x−y)m(y)ds(y)

Time-harmonic Maxwell scattering problem:

curlE = iωH ; curlH = −iωE in R3 \Ω
n× (E×n) = j0 on Γ = ∂ Ω

+ radiation condition
Continuity condition divΓ j−ω2m = 0 & tangential trace on Γ:

(EFIE)
(
Vω j
)
>+ 1

ω2 ∇>Vω divΓ j = j0

Single layer potential Vω m(x) =
∫

Γ Gω (x−y)m(y)ds(y)
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The EFIE: Principal properties

The EFIE on Γ

(EFIE)
(
Vω j
)
>+

1
ω2 ∇>Vω divΓ j = j0

Lemma (Nedelec, second half of 20th century)

If ω2 is not a Dirichlet eigenvalue in Ω, then

Cω : j 7→
(
Vω j
)
>+

1
ω2 ∇>Vω divΓ j

is an isomorphism between H−
1
2 (divΓ,Γ) and its dual space. One has

(
n×Cω

)2
=

1
4
I−M2

ω

where Mω is a compact operator in H−
1
2 (divΓ,Γ) if Γ is smooth.
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The EFIE: Problems

Good: (EFIE) is given by a non-degenerate quadratic form
Big problem : The principal part of Cω is indefinite.
No strong ellipticity in the sense of pseudodifferential operators, no
convergence of arbitrary Galerkin methods.

Two ways out, as before:
1 Construct special finite elements, and prove a generalized strong

ellipticity property, or
2 Regularize

We describe the regularization method introduced by MacCamy–Stephan
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The regularized EFIE (MacCamy & Stephan 1982)

Write the EFIE as a system(
Vω j
)
>+ ∇>Vω m = j0

Vω divΓ j−ω
2Vω m = 0

This is still essentially indefinite.
Now multiply the first equation by divΓ and subtract:

(EFIEreg)

(
Vω j
)
>+ ∇>Vω m = j0

Kω j− (∆Γ + ω
2)Vω m =−divΓ j0

Here ∆Γ is the Laplace-Beltrami operator, and
Kω = Vω divΓ−divΓ Vω is an operator of order −1 if Γ is smooth.

Theorem (MacCamy–Stephan)

The system (EFIEreg) is a strongly elliptic system of pseudodifferential
operators. It defines a Fredholm operator of index 0

H
s− 1

2
> (Γ)×Hs+ 1

2 (Γ) → H
s+ 1

2
> (Γ)×Hs− 1

2 (Γ) ∀s ∈ R

Any Galerkin scheme for its approximation is stable in H
− 1

2
> (Γ)×H

1
2 (Γ).
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Another Tale of Two Function Spaces

We consider scattering by an open surface Γ (Screen problem)

1 Given j0 ∈ H−
1
2 (curl>,Γ), then for any ω > 0 the Maxwell scattering

problem and (EFIE) each have a unique solution

E ∈ H loc(curl,R3 \Γ) + radiation condition

j ∈ H̃
− 1

2 (divΓ,Γ)

2 If j0 ∈ H
1
2
>(Γ), then also (EFIEreg) has a unique solution

(j,m) ∈ H̃
− 1

2 (Γ)× H̃
1
2 (Γ)

3 The solution of (EFIEreg) can be approximated by any conforming
finite element method [Stephan 1984, Heuer 1996].

Trap : The solutions j of (EFIE) and of (EFIEreg) are different, in general,

and the Maxwell solution does not satisfy divΓ j = ω2m ∈ H̃
1
2 (Γ).

Edge singularity: m ∼ r−
1
2 6∈ L2(Γ)
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Electromagnetic scattering by a penetrable homogeneous object

µ = µr in Ω, µ = 1 in R3 \Ω, ε = εr in Ω, ε = 1 in R3 \Ω.
Maxwell equations

curlE = iωµH ; curlH =−iωεE + J

hold in R3 in the distributional sense (+ radiation condition).
suppJ compact in R3 \Ω.
=⇒ Transmission conditions on Γ = ∂ Ω:

[E×n]Γ = 0 ; [n ·µH]Γ = 0
[H×n]Γ = 0 ; [n · εE]Γ = 0

Lippmann-Schwinger equation: One considers the obstacle as a
perturbation: curl 1

µ
curlE−ω2εE = iωJ ⇔

curlcurlE−ω
2E = iωJ−ω

2pE + curlq curlE

with p = (1− εr )χΩ, q = (1− 1
µr

)χΩ.
The right-hand side has compact support: Convolution with fundamental
solution of curlcurl−ω2:

gω =
( 1

ω2 ∇div+1
)
Gω ; Gω (x) =

eiω|x |

4π|x |
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Lippmann-Schwinger equation

Representation of E in R3 by volume integrals over Ω

E = ω
2gω ∗ (pE) + gω ∗ (curlq curlE) + E inc

=⇒ Volume integral equation in Ω

E = pAω E + qBω E + E inc

with

Aω E(x) =−∇div
∫

Ω
Gω (x−y)E(y)dy−ω

2
∫

Ω
Gω (x−y)E(y)dy

Bω E(x) = curl
∫

Ω
Gω (x−y)curlE(y)dy

Martin Costabel (Rennes) Importance of function spaces for Maxwell equations Waves 2011, Vancouver 29/07/2011 42 / 48



The dielectric scattering problem: q = 0

Volume integral equation: E−pAω E = E inc

Results (Co & E. Darrigrand & E.H. Koné 2009)

1 The operator Aω can be extended to L2(Ω) as a bounded operator.
2 It has H(curl,Ω) and H(div,Ω) as invariant subspaces.
3 For E inc in H(curl,Ω)∩H(div,Ω), the integral equation in L2 has the

same solutions as in H(curl,Ω) or in H(div,Ω).
4 Aω −A0 is compact in L2(Ω).
5 Sp(A0)⊂ [0,1]

0 and 1 are eigenvalues of infinite multiplicity of A0
1
2 is accumulation point of eigenvalues, and
Spess(A0) = {0, 1

2 ,1} if Γ is smooth

The dielectric scattering problem can be solved by solving the volume
integral equation in L2(Ω).
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The magnetic scattering problem: p = 0 (Co & E. Darrigrand & H. Sakly)

Volume integral equation: E−qBω E = E inc

The integral operator

Bω E(x) = curl
∫

Ω
Gω (x−y)curlE(y)dy

is bounded from H(curl,Ω) to itself and to H(div0,Ω).
For E ∈ C∞

0 (Ω) one has

Bω E = curlGω ∗curlE = curlcurlGω ∗E

= ∇divGω ∗E− (∆ + ω
2)Gω ∗E + ω

2Gω ∗E

= E−Aω E

Proposition (Kirsch & Lechleiter 2010)

The operator Bω can be extended to L2(Ω) as a bounded operator.

Trap alert !
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A Third Tale of Two Function Spaces

Theorem 1

Solving the volume integral equation

E−qBω E = E inc

in H(curl,Ω) is equivalent to the magnetic Maxwell scattering problem.

Theorem 2

Let B̂ω : L2(Ω)→ L2(Ω) be the extended operator. Solving the volume
integral equation

E−qB̂ω E = E inc

in L2(Ω) gives the Maxwell equations in R3 \Γ with the transmission
conditions

[ 1
µ

E×n]Γ = 0 ; [n ·H]Γ = 0
[H×n]Γ = 0 ; [n ·E]Γ = 0

Wrong !
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Explanation : For E ∈ H(curl,Ω), one has

B̂ω E = Bω E + curl
∫

Γ
Gω (x−y)E(y)×n(y)ds(y)

The latter term does not have a continuous extension to L2(Ω).

Proposition 1

The operator Bω cannot be extended from H(curl,Ω) to L2(Ω) as a
bounded operator.

Proposition 2

Although on C∞
0 (Ω) we have

Bω = I−Aω ,

the commutator of Aω and Bω on H(curl,Ω) is not compact.

=⇒ No joint essential spectrum of Aω and Bω in the Lippmann-Schwinger
operator

I−pAω −qBω
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Conclusion and Perspectives

Advice :
When you find a brilliant new algorithm for Maxwell’s equations, be sure to
check your function spaces !
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Thank you for your attention!
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