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Abstract

We study approximation errors for theh -version of Ńed́elec edge elements on anisotrop-
ically refined meshes in polyhedra. Both tetrahedral and hexahedral elements are consid-
ered, and the emphasis is on obtaining optimal convergence rates in the H(curl) norm for
higher order elements. Two types of estimates are presented: First,interpolation error esti-
mates for functions in anisotropic weighted Sobolev spaces. Here we consider not only the
H(curl)-conforming Ńed́elec elements, but also the H(div)-conforming Raviart-Thomas ele-
ments which appear naturally in the discrete version of the de Rham complex. Our technique
is to transport error estimates from the reference element to the physical element via highly
anisotropic coordinate transformations. Second,Galerkin error estimates for the standard
H(curl) approximation of time harmonic Maxwell equations. Here we use the anisotropic
weighted Sobolev regularity of the solution on domains with three-dimensional edges and
corners. We also prove the discrete compactness property needed for the convergence of the
Maxwell eigenvalue problem. Our results generalize those of [40] to the case of polyhedral
corners and higher order elements.

1 Introduction

Let Ω be a three-dimensional bounded domain filled with an isotropic, homogeneous material
whose magnetic permeability and electric permittivity are given by positive constantsµ and ε .
In this work, we are interested in the approximation of solutions of the time-harmonic Maxwell
equations inΩ by finite elements, in the situation whereΩ is a Lipschitz polyhedron. Such a
situation is very natural from the practical point of view, but is the cause of important difficulties,
and even sometimes obstructions to a converging approximation. The main reason for this is the
very poor regularity of solutions whenΩ has non-convex edges (and corners).

Let λ be a fixed non-zero complex number. The time-harmonic Maxwell equations for the
electric field can be written as:

curlµ−1 curl u− λεu = f Ω (1)

u× n = 0 ∂Ω. (2)

Here f is the current density which we assume to belong toL2(Ω) and to satisfydiv f = 0 .
Note that whenλ has a positive real part, (1) corresponds to the problem of electromagnetic

wave propagation in a dielectric conducting (whenλ ∈ C \ R ) or non-conducting (whenλ ∈ R )
medium. When the real part ofλ is negative, the problem (1) can be seen as the stationary problem
which has to be solved at each time step of the implicit time discretization of the electromagnetic
time-domain wave problem in a dielectric medium (see, e.g., [20])
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The corresponding variational space is H0(curl,Ω) defined as

H0(curl,Ω) := {u ∈ L2(Ω) : curl u ∈ L2(Ω) , u× n
∣∣
∂Ω

= 0},

endowed with the natural graph norm:

‖u‖X = ‖u‖L2(Ω) + ‖ curl u‖L2(Ω).

A classical variational formulation of problem (1)-(2) is:1

Find u ∈ H0(curl,Ω) such that:∫
Ω

curl u · curl v − λu · v =
∫
Ω

f · v ∀v ∈ H0(curl,Ω). (3)

The following theorem is now well known ([37], [18]):

Theorem 1.1 The problem (3) is well-posed for all λ ∈ C except for λ belonging to a non-
negative increasing sequence of eigenvalues

{
λj

}
j∈N

, λ0 = 0 , λj < λj+1 . Moreover, all
positive eigenvalues have finite multiplicity.

Thus, for λ 
∈
{
λj

}
j∈N

we are in the standard framework for well-posed variational problems.
Such problems can in principle be approached by sequences of Galerkin approximations. But,
when λ is positive, a generic difficulty is the infinite dimensional kernel (the eigenvalue λ0 ), and
this adds to the problem of the low regularity that we mentioned at the beginning: When Ω has
non-convex edges (and corners), in general u is not even in H1(Ω) , see [9, 21].

We know two main strategies to overcome these two categories of difficulties: (i) The use
of special families of elements satisfying specific commuting diagram properties and the discrete
compactness property, see [35], [10], [16], (ii) The regularization with weight, see [22, 25].

In this paper, we address strategy (i), which is widely spread in practice, with the families of
NÉDÉLEC edge elements, see [38], [20], [3]. Because of the poor regularity of the solution u , the
convergence rate is very low, and we loose all benefit of the use of higher degree elements.

In polygons, and for standard operators like the Laplacian, algebraic refinement towards the
corners is a remedy and restores the optimal rate of convergence. Such a method makes use of
shape-regular elements the size of which is adapted to the region were they are situated, without
enlarging the total number of elements, and keeping the assumption that the mesh is regular. The
pioneering work in this direction is [8] (see [43] for a list on references on the subject).

Now, in three dimensional domains, the refinement has to be performed towards edges and
corners, which is much more difficult to do. The possibility of using anisotropic elements can
make the design of the mesh easier, lower the number of elements and take advantage of the best
regularity properties of the solution: In fact solutions of problems like the Dirichlet problem for
the Laplace operator have more regularity in the direction of the edges than transversally to them.

The literature on anisotropic finite elements is nowadays rich and split basically into two cat-
egories: (i) the analysis of approximation properties of such elements for “ regular” solutions, but
under minimal requirements on the mesh (see [36], [2], [29], [1]); (ii) the analysis of approxima-
tion properties of “singular” solutions on suitably designed meshes, and with the aim of recovering
algebraic convergence for finite elements of any order. This approach goes back to [8] and was
developed in dimension three for low order Lagrangian finite elements in [4] (see also [7]), and

1We assume without restriction that εµ = 1 .
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partially extended to low order finite element approximation for vector problems in [30], [40]
under restrictive assumptions on the geometry of the polyhedron Ω .

In this paper, we adopt the second point of view and combine the idea of anisotropic refined
meshes with the use of edge elements to design algebraically optimal Galerkin methods for the
electric Maxwell solution u , in the sense of the following definition:

Definition 1.2 Let {Xh}h∈h be a family of finite element spaces, Xh ⊂ H0(curl,Ω) , character-
ized by a family of triangulations {Th}h∈h with h→ 0 , a degree k for the spaces of polynomials
and a set of degrees of freedom D . We assume that 0 is the only accumulation point of h and
that the number of degrees of freedom dimXh is O(h−3) .

We say that the Galerkin method based on the family {Xh}h∈h is algebraically optimal of degree
k if the Galerkin projection uh ∈ Xh of u satisfies for sufficiently regular right hand side:

‖u− uh‖X ≤ Ckhk

where Ck is a constant depending only on k . In terms of the number of degrees of freedom N ,
this means: ‖u− uh‖X ≤ C ′

kN
−k/3 . �

In this paper, the finite element spaces Xh are realized by taking the tetrahedral or hexahedral
edge elements of order k , k = 1, 2 ,...

The paper is structured in such a way that the different steps of a Galerkin error estimate are as
clearly separated as possible. The plan is as follows: In Section 2, we consider only the reference
element K̂ . We recall the definitions of the reference spaces and degrees of freedom and prove
interpolation error estimates, some of them new, in particular for tetrahedral elements, where we
make use of the commuting diagram property.

In Section 3, we consider individual physical elements K . We define anisotropic elements
by the introduction of admissible mappings, compatible with the Piola transformation, and we
prove elementwise estimates for the projection operators. It is worth noting that, in contrast with
anisotropic hexahedra where they are optimal, the local approximation properties of the edge-
element interpolation operator are somewhat less satisfactory for anisotropic tetrahedra. This is
due to the fact that, in the case of tetrahedra, the degrees of freedom have no tensor product struc-
ture and generate interpolation operators which do not commute with the projections on cartesian
coordinates, which results in the appearance of aspect ratios in the estimates.

In Section 4 we state regularity results in anisotropic weighted spaces for our solution u in the
form of a decomposition u = u0 +∇q with a more regular u0 . In Section 5, we formulate the
assumptions on the family of meshes {Th}h∈h and we prove global interpolation error estimates.
These imply the algebraic optimality under the condition that there holds a Céa-type estimate for
our problem: i.e. that ‖u − uh‖X � infvh∈Xh

‖u − vh‖X . In Section 6, we investigate the
questions of over-refinement of the mesh and of piecewise heterogeneous materials. We prove
generalization of the results of the previous section.

The Céa-type estimate holds when the variational formulation (3) is based on a strongly coer-
cive bilinear form on X , which is the case as soon as λ is not a positive real number. When λ is
positive, but different from the Maxwell eigenvalules λj , the obtention of the Céa-type estimate
is subject to the validity of a discrete compactness property. The possibility of a correct approx-
imation of eigenvalues is subject to the same condition. We investigate this discrete compactness
property in Section 7. We prove it for hexahedral elements of any degree and for tetrahedral el-
ements of lowest order 1 . We rely on a splitting of the fields in u0 + ∇q and we use results of
algebraic optimality for scalar interpolants [5, 7]. Finally, we draw conclusions in Section 8.
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2 Edge elements

In this section we recall the definitions of the reference polynomial spaces on a tetrahedral or
an hexahedral element, together with their associated degrees of freedom, in relation with the
commuting diagram property. The reference hexahedral element K̂ is a cube and the spaces and
degrees of freedom have a tensor product structure and, as a consequence, the projection operator
is diagonal in the canonical basis. Such features do not hold for tetrahedra in general, but we prove
in this section that, when restricted to subspaces of gradient fields or curl fields, the projection
operators act componentwise. This fact will help for estimates on anisotropic elements, see §3.2
and 3.3.

2.1 Edge elements on the reference element: definitions

We denote by (x̂1, x̂2, x̂3) = x̂ the coordinates in R3 and by ê1 , ê2 and ê3 the canonical basis
in R3 , so that x̂ = x̂1ê1 + x̂2ê2 + x̂3ê3 . The reference element K̂ is either the cube ]0, 1[3 or
the tetrahedron {(x̂1, x̂2, x̂3) ∈]0, 1[3 : x̂1 + x̂2 + x̂3 < 1} .

In the sequel, Pk denotes the space of polynomials of degree ≤ k and Pk stands for its
subspace of homogeneous polynomials of degree k , whereas Qi,j,k is the space of polynomials
of partial degrees ≤ i , j and k in the three variables x̂1 , x̂2 and x̂3 respectively.

The commuting diagram property is related to three families of finite elements, Pk for the
approximation of potentials or divergences, Nk for the approximation of the electric fields and
Rk for the approximation of their curls (magnetic fields):

1. Standard finite elements:

Pk =

{
Pk when K̂ is a tetrahedron

Qk,k,k when K̂ is a cube.

On Pk , we denote by π̂ the interpolation operator associated to the degrees of freedom:
(i) values at the vertices,
(ii) edge moments of order ≤ k − 2 ,
(iii) face moments of order ≤ k − 3 (tetrahedron) or ≤ k − 2 (cube),
(iv) volume moments of order ≤ k − 4 (tetrahedron) or ≤ k − 2 (cube).

In addition to the interpolation projector π̂ we also consider the L2 projection π̂∗ onto the
same space Pk .

2. First Nédélec family of edge elements (introduced in [39]):

Nk =

{
P3
k−1 ⊕ P

3
k−1 × x̂ when K̂ is a tetrahedron

Qk−1,k,k ×Qk,k−1,k ×Qk,k,k−1 when K̂ is a cube.
(4)

The following degrees of freedom constitute unisolvent sets on Nk :
For the reference tetrahedron:

1.
∫
e(w · τ) q de ∀ q ∈ Pk−1(e) ∀ e edge of K̂

2.
∫
f (w × n) · q df ∀q ∈ P2

k−2(f) ∀ f face of K̂

3.
∫
K̂

w · q dx̂ ∀q ∈ P3
k−3(K̂).

(5)
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For the reference cube:

1.
∫
e(w · τ) q de ∀ q ∈ Pk−1(e) ∀ e edge of K̂

2.
∫
f (w × n) · q df ∀q ∈

(
Qk−2,k−1 ×Qk−1,k−2

)
(f) ∀ f face of K̂

3.
∫
K̂

w · q dx̂ ∀q ∈
(
Qk−1,k−2,k−2 ×Qk−2,k−1,k−2 ×Qk−2,k−2,k−1

)
(K̂).

(6)
We denote by Π̂ the associated interpolation operator.

3. Raviart-Thomas finite elements (first introduced in [41], [42], see also [31]):

Rk =

{
P3
k−1 ⊕ Pk−1x̂ for the reference tetrahedron,

Qk,k−1,k−1 ×Qk−1,k,k−1 ×Qk−1,k−1,k for the reference cube.
(7)

The associated degrees of freedom for the reference tetrahedron are:

1.
∫
f (w · n) q df ∀ q ∈ Pk−1(f) ∀ f face of K̂

2.
∫
K̂

w · q dx̂ ∀q ∈ P3
k−2(K̂);

(8)

For the reference cube:

1.
∫
f (w · n) q de ∀ q ∈ Qk−1,k−1(f) ∀ f face of K̂

2.
∫
K̂

w · q dx̂ ∀q ∈
(
Qk−2,k−1,k−1 ×Qk−1,k−2,k−1 ×Qk−1,k−1,k−2

)
(K̂).

(9)

We denote by R̂ the associated interpolation operator.
It is well known that these elements share the following important property (see e.g., [33],

[34], and also [12]).

Theorem 2.1 Let W1,p(curl, K̂) = {w ∈W1,p(K̂) : curlw ∈W1,p(K̂)} and
W1,p(div, K̂) = {w ∈W1,p(K̂) : div w ∈W1,p(K̂)} .

Let p ≥ 2 . The following diagram commutes (and all operators are continuous):

W2,p(K̂) ∇−→ W1,p(curl, K̂) curl−→ W1,p(div, K̂) div−→ Lp(K̂)

↓ π̂ ↓ Π̂ ↓ R̂ ↓ π̂

Pk ∇−→ Nk
curl−→ Rk

div−→ Pk−1

2.2 Properties of the projection operator for edge elements

This section and the following one are devoted to the properties of Π̂ and R̂ on the reference
tetrahedron. We prove that there exist projection operators Π̂π and R̂π on the subspace P3

k−1 of

Nk and Rk , which (i) are diagonal in the canonical basis, (ii) coincide with Π̂π and R̂π on the
gradients and the curls respectively. Moreover, these operators are used to provide non-standard
Bramble-Hilbert estimates which will be useful later.

The tetrahedron K̂ has four faces and six edges. We agree to denote by fi its face with outer
normal −êi , and by ei its edge along êi , for i = 1, 2, 3 .
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Lemma 2.2 Let K̂ be the reference tetrahedron. Let k ≥ 1 .
(i) The degrees of freedom

1.
∫
ei

(v · êi) q de ∀ q ∈ Pk−1(ei) i = 1, 2, 3

2.
∫
fj

(v · êi) q df ∀ q ∈ Pk−2(fj) i = 1, 2, 3 , j 
= i

3.
∫
K̂

(v · êi) q dx̂ ∀ q ∈ Pk−3(K̂) i = 1, 2, 3;

(10)

are unisolvent on P3
k−1(K̂) and define a projector Π̂π on W1,p(K̂) , p > 2 .

(ii) The operator Π̂π is diagonal in the basis (ê1, ê2, ê3) , i.e.

∀v =
3∑

j=1

vj êj , Π̂π(viêi) = (Π̂πv)i êi, i = 1, 2, 3.

Remark 2.3 The point (ii) can be formulated equivalently by asserting that the coordinate projec-
tions πi :

∑3
j=1 vj êj �→ viêi commute with Π̂π , for i = 1, 2, 3 . �

Proof: (i) The number of degrees of freedom in (10) is 3(k + k(k − 1) + 1
6k(k − 1)(k − 2))

which is equal to 3(1
6k(k + 1)(k + 2)) which is the dimension of P3

k−1(K̂) . To prove that these

degrees of freedom are unisolvent, it suffices to prove that if v belongs to P3
k−1(K̂) and has all

its degrees (10) zero, then v = 0 . Let v1 be the first component v · ê1 of v . We have

1.
∫
e1
v1 q de = 0 ∀ q ∈ Pk−1(e1)

2.
∫
fj
v1 q df = 0 ∀ q ∈ Pk−2(fj) ∀ j = 2, 3

3.
∫
K̂
v1 q dx̂ = 0 ∀ q ∈ Pk−3(K̂).

Condition 1. with q = v1|e1 , gives that v1|e1 = 0 . Condition 2. with q = ∂1v1 gives after
integration by parts ∫

∂f3

v2
1 (nf3 · ê1) df = 0,

∫
∂f2

v2
1 (nf2 · ê1) df = 0, (11)

where nfj
denotes the outer normal to the face fj in the plane of fj . Call efj

the only edge of

K̂ belonging to ∂fj which does not coincide with ei for any i = 1, 2, 3 . Then (11) implies that
v1 = 0 on ef2 and ef3 . Condition 2. with q = ∂2v1 implies

∫
∂f3
v2
1(nf3 · ê2) df = 0 , which

means v1 = 0 on e2 . Again, using q = ∂3v1 , we have
∫
∂f2
v2
1(nf2 · ê3) df = 0 , which implies

v1 = 0 on e3 . Finally, testing with q = ∂2
1v1 and q = ∂2

2v1 on f3 , and with q = ∂2
1v1 and

q = ∂2
3v1 on f2 , we deduce easily that v1 = 0 on f2 and f3 .

Let now λi , i = 1, 2, 3, 4 be the barycentric coordinates associated to K̂ . Then, since v1 = 0
on f2 and f3 , there exists a ψ ∈ Pk−3(K̂) such that v1 = λ3λ2ψ . Choosing q = ψ in Condition
3. we obtain:

∫
K̂
λ3λ2|ψ|2dx̂ = 0 , which implies ψ = 0 . Therefore v1 = 0 and, of course, we

obtain in the same way that vi = 0 , i = 2, 3 .
(ii) We set Π̂π(viêi) = ϕi with ϕi ∈ P3

k−1(K̂) . By (10) ϕi = (ϕi1, ϕi2, ϕi3) verifies:

for every j , j 
= i :


∫
ej
ϕij q de = 0 ∀ q ∈ Pk−1(ej)∫

f�
ϕij q df = 0 ∀ q ∈ Pk−2(f�) j 
= � ,∫

K̂
ϕij q dx̂ = 0 ∀ q ∈ Pk−3(K̂)
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This implies that ϕij for j 
= i verifies k + k(k − 1) + 1
6k(k − 1)(k − 2) constraints which

are independent since (10) are unisolvent degrees of freedom. Since ϕij ∈ Pk−1(K̂) and the
dimension of Pk−1(K̂) is equal to 1

6k(k+1)(k+2) , i.e. to the number of independent constraints,

ϕij = 0 for all j 
= i . We have proved that Π̂π is diagonal. �

Proposition 2.4 Let K̂ be the reference tetrahedron. The interpolation operator Π̂ coincides
with Π̂π on W1,p ∩ ker{curl} .

Proof: Let v ∈ W1,p ∩ ker{curl} . There exists q ∈ W2,p(K̂) such that ∇q = v . Then
the commuting diagram property yields that Π̂v = ∇π̂q . Since π̂q ∈ Pk(K̂) , we deduce that
Π̂v ∈ P3

k−1(K̂) . Thus, Π̂v = Π̂πΠ̂v . By virtue of the following lemma, Π̂πΠ̂ = Π̂π . Therefore

Π̂v = Π̂πv . �

Lemma 2.5 Let ΠA and ΠB be two projection operators H → A and H → B , with A ⊂ B ,
defined by two spaces of degrees of freedom A and B with A ⊂ B . Then ΠAΠB = ΠA .

Proof: Let u ∈ H . The degrees of freedom in B are zero on ΠBu − u . Since they contain
those of A , ΠA(ΠBu− u) = 0 . �

The operator Π̂ is then split as Π̂ = Π̂π + (Π̂ − Π̂π) . This allows to obtain a non-standard
Bramble Hilbert estimate for low order edge elements N1 :

Lemma 2.6 Let k = 1 and v = (v1, v2, v3) ∈ W1,p(curl, K̂) , p > 2 , such that curl v ∈ R3 .
The following estimate holds:

‖vi − (Π̂v)i‖Lp(K̂)
� ‖∇vi‖Lp(K̂)

+ ‖ curl v‖Lp(K̂)
. (12)

Proof: Let v be a vector field verifying the assumption of the Lemma. We have:

vi − (Π̂v)i = vi − (Π̂πv)i −
(
(Π̂v)i − (Π̂πv)i

)
. (13)

Now, by construction Π̂v − Π̂πv = b × x , for some b ∈ R3 , and curl(Π̂v − Π̂πv) =
curl Π̂v = curl v = 5b since Π̂πv is a constant vector of R3 . This gives the estimate:

‖(Π̂v)i − (Π̂πv)i‖Lp(K̂)
≤ ‖Π̂v − Π̂πv‖Lp(K̂)

� ‖ curl v‖Lp(K̂)
.

On the other hand, since Π̂π is diagonal and reproduces constants, the standard Bramble-Hilbert
estimate, see [19], gives:

‖vi − (Π̂πv)i‖Lp(K̂)
� ‖∇vi‖Lp(K̂)

.

Inserting these last two estimates into (13), we obtain (12). �

2.3 Properties of the projection operator for Raviart-Thomas elements

We now concentrate on the properties of the Raviart-Thomas interpolation operator.
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Lemma 2.7 Let K̂ be the reference tetrahedron. Let k ≥ 1 .
(i) The degrees of freedom

1.
∫
fi

(ξ · êi) q df ∀ q ∈ Pk−1(fi) ∀ i = 1, 2, 3

2.
∫
K̂

ξ · q dx̂ ∀q ∈ P3
k−2(K̂);

(14)

are unisolvent on P3
k−1(K̂) and define a projector R̂π on W1,p(K̂) , p ≥ 2 .

(ii) The operator R̂π is diagonal in the basis (ê1, ê2, ê3) , i.e.

∀ξ =
3∑

j=1

ξj êj , R̂π(ξiêi) = (R̂πξ)i êi, i = 1, 2, 3.

Proof: (i) The number of degrees of freedom in (14) is 3
(

1
2k(k + 1) + 1

6(k − 1)k(k + 1)
)

which is equal to 3
(

1
6k(k + 1)(k + 2)

)
, the dimension of P3

k−1(K̂) . To prove that these degrees

of freedom are unisolvent, it suffices to prove that if ξ belongs to P3
k−1(K̂) and has all its degrees

(14) zero, then ξ = 0 . Let us fix i and let ξi be the i -th component ξ · êi of ξ . We have

1.
∫
fi
ξi q df = 0 ∀ q ∈ Pk−1(fi) ∀ i = 1, 2, 3

2.
∫
K̂
ξi q dx̂ = 0 ∀ q ∈ Pk−2(K̂).

Condition 1. with q = ξi|fi
gives that ξi|fi

= 0 . Condition 2. with q = ∂iξi gives after
integration by parts ∫

∂K̂

v2
i (n · êi) df = 0.

The contributions on the faces fj with j 
= i are zero because n · êi = 0 . The contribution on
fi is also zero as just proved. Therefore, since n · êi is a non-zero constant on the last face f4 of
K̂ , we find that ξi|f4 = 0 . We deduce that ξ cancels all Raviart-Thomas degrees of freedom (8).
Therefore ξ = 0 .

(ii) We set R̂πξi = ϕi with ϕi ∈ P3
k−1 . By (14) ϕi = (ϕi1, ϕi2, ϕi3) verifies:∫

fj

ϕij q = 0 ∀ q ∈ Pk−1(fj) and
∫
K̂

ϕij q = 0 ∀ q ∈ Pk−2(K̂), ∀ j 
= i.

This implies that ϕij for j 
= i verifies 1
6k(k+1)(k+2) constraints which are independent since

(14) are unisolvent degrees of freedom. Since ϕij ∈ Pk−1(K̂) and the dimension of Pk−1(K̂) is
equal to the number of independent constraints, ϕij = 0 for all j 
= i . We have proved that R̂π

is diagonal. �

Proposition 2.8 Let K̂ be the reference tetrahedron. The interpolation operator R̂ coincides
with R̂π on W1,p(K̂) ∩ Ker{div} .

Proof: Let ξ be such that div ξ = 0 . Therefore ξ is a curl and by the commutative diagram
property (33), div R̂ξ = 0 . We have R̂ξ = ϕ + ψx̂ with ϕ ∈ P3

k−1(K̂) and ψ ∈ Pk−1(K̂) .
Thus

div R̂ξ = div ϕ + 3ψ + x̂ · ∇̂ψ = div ϕ + (k + 2)ψ.

As the degree of div ϕ is k − 2 , we find that ψ = 0 . Therefore R̂ξ ∈ P3
k−1(K̂) and R̂ξ =

R̂πR̂ξ . By Lemma 2.5 we deduce that R̂ξ = R̂πξ . �
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The analogue Lemma to 2.6 for Raviart-Thomas elements is the following:

Lemma 2.9 Let k = 1 , and ξ = (ξ1, ξ2, ξ3) ∈ W1,p(div, K̂) , p ≥ 2 . The following estimate
holds:

‖ξi − (R̂ξ)i‖Lp(K̂)
� ‖∇ξi‖Lp(K̂)

+ ‖div ξ‖L2(K̂)
. (15)

Proof: Let ξ be a vector field verifying the assumption of the Lemma. We have:

ξi − (R̂ξ)i = ξi − (R̂πξ)i −
(
(R̂ξ)i − (R̂πξ)i

)
. (16)

Now, by construction R̂ξ − R̂πξ = bx , for some b ∈ R , and div(R̂ξ − R̂πξ) = div R̂ξ =
3 b since R̂πξ is a constant vector of R3 . Finally, by Theorem 2.1, div R̂ξ = π̂ div ξ , thus
‖div R̂ξ‖

Lp(K̂)
� ‖div R̂ξ‖

L2(K̂)
� ‖div ξ‖

Lp(K̂)
. This gives the estimate:

‖(R̂ξ)i − (R̂πξ)i‖Lp(K̂)
≤ ‖R̂ξ − R̂πξ‖Lp(K̂)

� ‖div ξ‖Lp(K̂)
.

On the other hand, since R̂π is diagonal and reproduces constants, the Bramble-Hilbert estimate
gives:

‖ξi − (R̂πξ)i‖Lp(K̂)
� ‖∇ξi‖Lp(K̂)

.

Inserting these last two estimates into (16), we obtain (15). �

Remark 2.10 Lemma 2.9 seems more powerful than Lemma 2.6 since it is valid for any vector
field ξ ∈ W1,p(div, K̂) , while Lemma 2.6 holds only for vectors with constant curl. This is a
consequence of the fact that, along the vertical arrows of the commuting diagram in Theorem 2.1,
the only projection operator which is stable in L2 is π̂ . On the other hand, the same techniques
can not be applied for k ≥ 2 since in this case Π̂πv and R̂πξ are not curl and divergence free
respectively.

3 Anisotropic elementwise estimates

In this section we concentrate on the local approximation properties of edge elements on a physical
element K obtained by an affine transformation from a reference cube or tetrahedron K̂ .

More precisely, in Section 3.1 we fix our requirements on the mapping ΦK from K̂ to the
physical elements. We authorize K to be stretched in one or two directions, but we need to
guarantee some “non-degeneracy” conditions which are discussed. Next, in Sections 3.2 and 3.3
we prove local Lp(K) error estimates for the interpolation operator in the physical element for
the electric field and its curl.

3.1 Mapping to the physical element

Let K be the generic element of a mesh Th in a family (Th)h∈h , and K̂ be the reference
element. We assume that every K is obtained from K̂ by means of an affine and invertible
mapping ΦK : K̂ → K . Let us recall the induced mappings for the spaces in the deRham
commuting diagram, cf Theorem 2.1:

• The scalar functions q̂ in H1(K̂) and in the reference space Pk are mapped simply by

q ◦ ΦK = q̂.

9



• The vector fields v̂ in H(curl, K̂) and Nk are mapped as 1-forms:

v̂ = DΦ�
K(v ◦ ΦK), i.e. v ◦ ΦK = DΦ−1,�

K v̂. (17)

• The vector fields ξ̂ in H(div, K̂) and Rk are mapped as 2-forms, i.e., by means of the
Piola mapping [12], [31]:

ξ ◦ ΦK = (detDΦK)−1DΦK ξ̂. (18)

These choices ensure that the commuting diagram property formulated in Theorem 2.1 still holds
for the corresponding space on the physical domains (see [34] and references therein).

Related to its situation in Ω (namely the proximity of an edge), the element K is associated
with a local system of Cartesian coordinates xK = (xK1 , x

K
2 , x

K
3 ) and ΦK : x̂ �→ xK . The tem-

plate for our anisotropic elements is obtained by the mapping ΦK(x̂1, x̂2, x̂3) = (xK1 , x
K
2 , x

K
3 ) =

(d1x̂1, d2x̂2, d3x̂3) , where d1 , d2 and d3 are the characteristic dimensions of K .
In general, the mapping ΦK can be represented as ΦK x̂ = DΦK x̂ + cK and we require that

the matrix DΦK satisfies the assumption:

Assumption 1 For any h ∈ h and any K ∈ Th , there exists a diagonal scaling matrix

HK =

d1 0 0
0 d2 0
0 0 d3


and two matrices BK and B̆K which, together with their inverses, are bounded independently of
h and K , such that:

DΦK = HK BK = B̆K HK . (19)

Remark 3.1 (i) In Assumption 1, the uniform boundedness condition on B̆K and B̆−1
K implies

the maximum angle condition investigated in [36], [29] and also the regular vertex condition used
in [1] to obtain anisotropic estimates for Raviart-Thomas elements.

(ii) Assumption 1 implies conditions (3.2-3.3) in [7].

(iii) As we have BK = H−1
K B̆KHK , the requirement ‖BK‖ � C combined with the boundedness

of B̆K can be interpreted as follows: if the element is “long” in one direction, then, this direction
has to be “fairly orthogonal” to the other two. The same condition has been indirectly used in
[40] and [30].

In the following two paragraphs, we give estimates for the Lp norm of the local interpolation
errors for the Nédélec interpolation operator ΠK and for the Raviart-Thomas interpolation oper-
ator RK when acting on curls. This applies to the electric and magnetic fields in a natural way.
The upper bounds are weighted semi-norms.

3.2 Estimates for the local Nédélec interpolation operator ΠK

We denote by Π̂ the corresponding Nédélec interpolation operator on the reference element K̂ .
The operator Π̂ matches the degrees of freedom (5) or (6) between the interpolated field and its

10



interpolant. Let v ∈ C∞(R3)3 , and denote by ΠK the physical interpolant on the generic physical
element K . The transport relation is similar to (17):

(ΠKv) ◦ ΦK = DΦ−1,�
K Π̂v̂. (20)

We start with estimates by first order derivatives.

Proposition 3.2 Let k ≥ 1 and p > 2 . Under Assumption 1, there hold the estimates:

(i) For any v = (v1, v2, v3) ∈W1,p(K) : ‖v −ΠKv‖Lp(K) �
3∑

j=1

3∑
�=1

djd�
mini di

‖∂�vj‖Lp(K) .

(ii) If the interpolation operator Π̂ is diagonal: ‖v −ΠKv‖Lp(K) �
3∑

�=1

d� ‖∂�v‖Lp(K) .

Remark 3.3 The condition p > 2 is necessary because the interpolation operator Π̂ is continu-
ous from W1,p(K̂)→ Nk only for p > 2 , see [3].

Proof: (i) According to Assumption 1, we have |DΦ−1
K | � (mini di)−1 . With (20) this allows

to estimate:∫
K

|v −ΠKv|p dx = |detDΦK |
∫
K̂

|v ◦ ΦK − (ΠKv) ◦ ΦK |p dx̂

= |detDΦK |
∫
K̂

|DΦ−1,�
K v̂(x̂)−DΦ−1,�

K Π̂v̂(x̂)|p dx̂

� |detHK |
∫
K̂

1
(min

i
di)p

|v̂ − Π̂v̂|p dx̂.

(21)

Using now the Bramble-Hilbert estimate and the fact that Π̂ leaves constants unchanged, we have:∫
K̂

|v̂ − Π̂v̂|p dx̂ �
∫
K̂

|∇̂v̂|p dx̂, p > 2. (22)

Since v̂ = DΦ�
K(v ◦ ΦK) , the derivation rule yields the relation on K̂ :

∇̂v̂ = DΦ�
K

(
(∇v) ◦ ΦK

)
DΦK .

Here we have used the matrix notation (with ∂̂1 = ∂x̂ , etc...)

∇̂v̂ =

∂̂1v̂1 ∂̂2v̂1 ∂̂3v̂1
∂̂1v̂2 ∂̂2v̂2 ∂̂3v̂2
∂̂1v̂3 ∂̂2v̂3 ∂̂3v̂3

 and ∇v =

∂1v1 ∂2v1 ∂3v1
∂1v2 ∂2v2 ∂3v2
∂1v3 ∂2v3 ∂3v3


Using now the decomposition DΦK = HKBK , we rewrite

∇̂v̂ = B�
KHK

(
(∇v) ◦ ΦK

)
HKBK . (23)

11



We use this formula and (22) in (21) to obtain:∫
K

|v −ΠKv|p dx �
|detHK |
(min

i
di)p

∫
K̂

|∇̂v̂|p dx̂

� 1
(min

i
di)p

∫
K

|B�
KHK (∇v)HKBK |p dx

� 1
(min

i
di)p

∫
K

|HK (∇v)HK |p dx

�
3∑

j=1

3∑
�=1

dpj

(min
i
di)p

∫
K

|d�∂�vj |p dx,

(24)

which ends the proof of (i).

(ii) Let us suppose that the interpolation operator Π̂ is diagonal. In this case, for v̂ = (v̂1, v̂2, v̂3)�

and v̂i = v̂iêi , we have (Π̂v̂)iêi = Π̂v̂i . Therefore

v̂i − Π̂v̂i =
(
v̂i − (Π̂v̂i)i

)
êi .

This fact can be used to improve (21) in the following way: Combining (20) with the factorization
DΦK = B̆KHK we obtain the relation between Π̂ and ΠK :

(ΠKv) ◦ ΦK = B̆−1,�
K H−1

K Π̂v̂. (25)

This gives ∫
K

|v −ΠKv|p dx � |detHK |
∫
K̂

|H−1
K v̂(x̂)−H−1

K Π̂v̂(x̂)|p dx̂

� |detHK |
3∑
i=1

∫
K̂

|H−1
K

(
v̂i(x̂)− Π̂v̂i(x̂)

)
|p dx̂

� |detHK |
3∑
i=1

∫
K̂

1
(di)p

|v̂i − Π̂v̂i|p dx̂.

(26)

Then we can use the Bramble-Hilbert estimate on each v̂i . Finally we have to come back to K .
Let vi be the field transported from v̂i , i.e. v̂i = DΦ�

K(vi ◦ ΦK) . Note that vi , in general, is
not parallel to êi . However, the vector

v̆i := B̆�
Kvi = H−1

K v̂i ◦ Φ−1
K

has, like v̂i , only its i -th component non-zero. Therefore, writing

∇̂v̂i = HKB̆
�
K

(
(∇vi) ◦ ΦK

)
HKBK

= HK

(
(∇v̆i) ◦ ΦK

)
HKBK

12



instead of (23), we obtain∫
K

|v −ΠKv|p dx �
3∑
i=1

|detHK |
(di)p

∫
K̂

|∇̂v̂i|p dx̂

�
3∑
i=1

1
(di)p

∫
K

|HK (∇v̆i)HKBK |p dx

�
3∑
i=1

1
(di)p

∫
K

|di (∇v̆i)HK |p dx

�
3∑
i=1

∫
K

|d�∂�B̆�
Kv |p dx �

3∑
�=1

∫
K

|d�∂�v|p dx,

(27)

which ends the proof of (ii). �

Finally, when the assumptions of Lemma 2.6 are fulfilled, (22) can be replaced by (12). We
obtain the following Proposition:

Proposition 3.4 Let k = 1 and that the triple (d1, d2, d3) verifies

d� dj

di
� max

j
dj for all distinct i , j , �.

Let v ∈W1,p(curl,K) , p > 2 , be a vector field with constant curl. Then:

‖v −ΠKv‖Lp(K) �
3∑

�=1

d� ‖∂�v‖Lp(K) + (max
j
dj) ‖ curl v‖Lp(K). (28)

Proof: Similarly as in (26), we compute:∫
K

|v −ΠKv|p dx � |detHK |
∫
K̂

|H−1
K v̂(x̂)−H−1

K Π̂v̂(x̂)|p dx̂

� |detHK |
∫
K̂

3∑
i=1

1
dpi

(|∇̂v̂i(x̂)|p + |ĉurlv̂(x̂)|p) dx̂.
(29)

This implies:∫
K

|v −ΠKv|p dx �
3∑

�=1

∫
K

|d�∂�v|p dx +
3∑

�,j=1

1
(mini di)p

∫
K

|djd�(∂jv� − ∂�vj)|p dx

�
3∑

�=1

∫
K

|d�∂�v|p dx + (max
j
dj)p‖ curl v‖pLp(K)

(30)

where in the last line we have used the assumption
dj d�
di

≤ maxj dj for all distinct i , j , � . �
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Let us denote by d the three dimensions (d1, d2, d3) and by dα = dα1
1 d

α2
2 d

α3
3 . The general

estimates involving semi-norms of higher degree are:

Proposition 3.5 Let � ≥ 2 , k ≥ � and p ≥ 2 . Under Assumption 1, there hold the estimates:

(i) For any v ∈W�,p(K) : ‖v −ΠKv‖Lp(K) �
3∑

j=1

dj
mini di

∑
|α|=�

dα ‖∂αvj‖Lp(K) .

(ii) If the interpolation operator Π̂ is diagonal: ‖v −ΠKv‖Lp(K) �
∑
|α|=�

dα ‖∂αv‖Lp(K) .

Proof: By the Bramble-Hilbert estimate, we know that (22) can be replaced by∫
K̂

|v̂ − Π̂v̂|p dx̂ �
∫
K̂

∑
|α|=�

|∂̂αv̂|p dx̂. (31)

Following exactly the same argument as before, we then have instead of (24) :∫
K

|v −ΠKv|p dx �
|detHK |
(min

i
di)p

∑
|α|=k

∫
K̂

|∂̂αv̂|p dx̂

�
|detHK |
(min

i
di)p

∑
|α|=k

∫
K̂

∑
j

|djdα(∂αvj) ◦ ΦK)|p dx̂.

Whence estimate (i). The proof of (ii) is similar. �

3.3 Local Raviart-Thomas interpolation estimate for a curl

In order to estimate the term
∫
K | curl(v−ΠKv)|pdx of the interpolation error, we make use of

the commuting diagram property Theorem 2.1. Let RK be the local Raviart-Thomas interpolant
obtained by means of (18):

RKξ ◦ ΦK = (detDΦK)−1DΦK R̂ ξ̂ (32)

Theorem 2.1 says that

curlΠKv = RK curl v. (33)

We then have to provide bounds in Lp(K) for the quantity ξ −RKξ , with ξ = curl v .

Proposition 3.6 Let � ≥ 1 , k ≥ � and p ≥ 2 . Under Assumption 1, for any ξ ∈ W�,p(K) with
div ξ = 0 there hold the estimates:

‖ξ −RKξ‖Lp(K) �
∑
|α|=�

dα ‖∂αξ‖Lp(K) . (34)

Proof: Let us assume that � = 1 . The relations (18) and (32) together with the factorization
B̆KHK of DΦK yields∫

K

|ξ −RKξ|p dx � |detHK |1−p
∫
K̂

|HK ξ̂ −HKR̂ξ̂|p dx̂.
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Using Lemma 2.7 and Proposition 2.8, and since R̂π keeps constants unchanged, we obtain∫
K

|ξ −RKξ|p dx � |detHK |1−p
∫
K̂

3∑
j=1

dpj |ξ̂j − (R̂πξ̂)j |p dx̂

� |detHK |1−p
∫
K̂

3∑
j=1

dpj |∇̂ξ̂j |p dx̂.

(35)

We proceed as in the proof of Proposition 3.2, (ii). Using both factorizations of DΦK , we obtain

∇̂ξ̂ = (detDΦK)DΦ−1
K ∇ξ ◦ ΦK DΦK = (detDΦK)H−1

K B̆−1
K ∇ξ ◦ ΦK HKBK .

Thus:∫
K

|ξ −RKξ|p dx � |detHK |1−p
∫
K̂

3∑
j=1

dpj

3∑
i=1

| d−1
j di(∂iξj) ◦ ΦK |p |detDΦK |p dx̂

�
∫
K

|
3∑
i=1

di∂iξ|p dx ,

(36)

which ends the proof when � = 1 . The general case is similar. �

For non divergence free fields, instead of (34) estimates similar to those of Proposition 3.5 (i)
would be obtained, i.e. with additional factors of the type dj

mini di
on the right hand side.

When k = 1 , a better estimate can be obtained starting from Lemma 2.9. We state here the
following Proposition with the aim of showing that results in [1] are recovered by our technique.

Proposition 3.7 Let k = 1 and ξ ∈W1,p(div,K) , p ≥ 2 . We have:

‖ξ −RKξ‖Lp(K) �
3∑

�=1

d� ‖∂�ξ‖Lp(K) + (max
j
dj) ‖div ξ‖Lp(K). (37)

Proof: We estimate:∫
K

|ξ −RKξ|p dx � |detHK |1−p
∫
K̂

3∑
i=1

dpi |ξ̂i − (R̂ξ̂)i|p dx̂

� |detHK |1−p
∫
K̂

3∑
i=1

dpi (|∇̂ξ̂i|p + |d̂ivξ̂|p) dx̂.

(38)

Using that d̂ivξ̂ = |detDΦK |div ξ ◦ ΦK , and the same reasoning as in (36), we obtain:∫
K

|ξ −RKξ|p dx �
∫
K

3∑
i=1

di |∂iξ|p dx + (max
j
dj)p‖div ξ‖pLp(K). (39)

�
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4 Regularity results for the electric field in a polyhedral domain

In order to provide regularity results for the solution of problem (1) and also to define our require-
ments on the mesh, we are going to identify subregions of the domain Ω governed by a corner
c or an edge e or both. We refer to [32] and [22] for the introduction of similar subregions and
coordinates.

We denote by E and C the set of edges and corners of the polyhedron Ω . Moreover for every
c ∈ C , we denote by Ec the set of edges e such that c ⊂ e , and for every c , by Ce the set of
two corners which are endpoints of e . For any c ∈ C and e ∈ E , define:

re(x) = dist(x, e) , rc(x) = dist(x, c) x ∈ Ω. (40)

Let now c ∈ C and Br(c) be a ball centered in c with radius r which is not intersecting
any other corner of Ω . We denote by Gc ⊂ S2 the spherical polygonal domain corresponding
to ∂Br(c) ∩ Ω . There is a bijection between the vertices ŷe of Gc and the edges e in Ec . For
every e ∈ Ec , let V (xe) be a neighborhood of ŷe in Gc such that V (ŷe) does not contain any
other vertex of Gc .

We introduce spherical coordinates (rc, ϑc) , ϑ ∈ S2 associated to the corner c . This allows
to define:

V c
e = {(rc, ϑc) , rc < ε , ϑc ∈ V (ŷe)},
V 0

c = {(rc, ϑc) , rc < ε , ϑc ∈ Gc \ (∪e∈Ec V (ŷe))},
(41)

where ε ∈ R+ is small enough to ensure that no other corner except c belongs to V 0
c and V c

e .
Besides the neighborhoods V c

e and V 0
c , we introduce V 0

e such that V 0
e does not contain any

other edge than e , nor any corner and such that e is contained in V 0
e ∪

( ⋃
c∈Ce

V c
e

)
. And finally

choose V 0 such that V 0 contains no edge and no corner and such that

Ω = V
0 ∪

⋃
e∈E

V
0
e ∪

⋃
c∈C

(
V

0
c ∪

⋃
e∈Ec

V
c
e

)
.

In the regions V 0
e and V c

e associated with the edge e we choose a local system of Cartesian
coordinates xe = (xe

1, x
e
2, x

e
3) in which the direction of the edge is xe

3 . The subscript ⊥ will
always denote the directions transverse to the edge: For example, if α is a derivation multi-index,
α = (α⊥, α3) means α⊥ derivatives in (xe

1, x
e
2) and α3 in xe

3 . Then we define the space:

Mm,p
γ (Ω) :=

{
u ∈ Lp(Ω) : ∀ |α| ≤ m ∂αu ∈ Lp(V 0),

∀ c ∈ C r
γ+|α|
c ∂αu ∈ Lp(V 0

c )

∀ e ∈ E r
γ+|α⊥|
e ∂αu ∈ Lp(V 0

e ) and r
α3
c r

γ+|α⊥|
e ∂αu ∈ Lp(V c

e )
}
.

(42)

We denote by Mm,p
γ (Ω) the corresponding space of vector-valued functions, i.e. Mm,p

γ (Ω)3 .

Theorem 4.1 There exists βΩ > 0 and δΩ > 0 so that the following regularity results holds
for the solutions u of (3) when λ is not an eigenvalue of this problem. If f is C∞(Ω) and
divergence-free, there exists a potential q ∈ H1

0(Ω) such that for all p ∈ [2, 2 + δΩ) , for all
β ∈ (0, βΩ) and all m > 0 :

u = u0 +∇q with u0 ∈Mm,p
−1−β(Ω) and q ∈ Mm+1,p

−1−β (Ω). (43)
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As a consequence of this splitting, u belongs to a anisotropic space in which an improved
regularity for the tangential component along the edges holds: We define

Mm,p
γ (Ω) :=

{
u ∈Mm,p

γ (Ω) : ∀ e ∈ E , and with ue,3 the component of u along e,

∀ |α| ≤ m r
−1+γ+|α⊥|
e ∂αue,3 ∈ Lp(V 0

e )

r
1+α3
c r

−1+γ+|α⊥|
e ∂αue,3 ∈ Lp(V c

e )
}
.

(44)

Note that we have the inclusions Mm,p
γ−1(Ω) ⊂ Mm,p

γ (Ω) ⊂ Mm,p
γ (Ω) and that the operator ∇

is continuous from Mm+1,p
γ−1 (Ω) into Mm,p

γ (Ω) . If we combine this with the continuity of the

operator curl : Mm,p
−1−β(Ω)→Mm−1,p

−β (Ω) , we obtain

Corollary 4.2 Under the conditions of Theorem 4.1, curl u = curl u0 belongs to Mm,p
−β (Ω) .

Moreover u ∈Mm,p
−β (Ω) .

The proof of the theorem is beyond the scope of this paper. Actually it is not an easy conse-
quence of the known theory about Maxwell singularities [21] and it requires the use of sophisti-
cated techniques from the theory of singularities for elliptic problems [26]. Further details can be
found in [14] which is announcing the general theory for both the Laplace and Maxwell operators.
Moreover, the statement could be improved regarding the requirements on the right hand side f ;
but these results are not needed here and the related theory is still under investigation.

5 Convergence Analysis for the Galerkin method

In this section, we introduce the discretization of the problem (3) by anisotropically refined edge
elements, and provide a-priori estimates for the associated Galerkin error.

This analysis requires some preparation: in Section 5.1 we set notations and assumptions for
the definition of anisotropic refined meshes, in Section 5.2 we use the local estimates obtained in
Section 3 in order to prove algebraic convergence for the best approximation error. These results
allow to conclude algebraic optimality for the Galerkin problem when the underlying continuous
problem is strongly coercive (cf (69)). When this is not the case, some additional results are
needed to conclude convergence of the Galerkin scheme: We need to prove the so-called discrete
compactness property [35]. This is investigated in Section 7. In Section 6 we present some
extensions of the present theory.

5.1 Anisotropically refined meshes

Let {Th}h∈h be a family of meshes (hexahedral or tetrahedral) which verifies Assumption 1, §3.1.
For each h ∈ h fixed, we define subsets of Th :

L0 denotes the set of elements K ∈ Th such that K ∩ C 
= ∅ , i.e., one corner of K coincides
with one corner of Ω . Note that #L0 # #C ;

L1 denotes the set of elements K ∈ Th such that K ∩ {e , e ∈ E } 
= ∅ , i.e., K has one edge
or one corner sitting on an edge or a corner of Ω . Note that L0 ⊂ L1 .

L2 is the set of elements K ∈ Th \ L1 which share an edge or a corner with a K ∈ L1 ;
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re,K = minx∈K re(x) and rc,K = minx∈K rc(x) ∀K 
⊂ L1

A discrete version of the family of neighborhoods defined in Section 4 is defined as:

V
0(h) = {K ∈ Th : K ∩ V 0 
= ∅},

V
0
e (h) = {K ∈ Th : K ∩ V 0

e 
= ∅},
V

0
c (h) = {K ∈ Th : K ∩ V 0

c 
= ∅},
V

c
e (h) = {K ∈ Th : K ∩ V c

e 
= ∅}.

In order to provide an algebraically optimal (in the sense of Definition 1.2) edge element
method, we now have to give precise bounds for the possible choices of d = (d1, d2, d3) for
elements in different region of the mesh, i.e., provide a set of assumptions that Th has to verify
once k and the set of degrees of freedom Nk are fixed. In the edge regions V 0

e (h) , V c
e (h) the

local system of Cartesian coordinates xK is chosen equal to the system xe introduced in Section
4. In the other regions, where the elements will be supposed isotropic, any system of Cartesian
coordinates can be chosen.

In order to prove algebraic convergence, we need the following assumption on the mesh:

Assumption 2k,β Refinement for fixed k ∈ N and β ∈ (0, 1) :

K ∈ V 0
c (h) \ L1 d1 # d2 # d3 # h r1−β/kc,K

K ∈ V 0
e (h) \ L1 d1 # d2 # h r1−β/ke,K d3 # h

K ∈ V c
e (h) \ L1 d1 # d2 # h r1−β/ke,K d3 # h r1−β/kc,K

K ∈ L0 d1 # d2 # d3 # hk/β

K ∈ V 0
e (h) ∩ L1 d1 # d2 # hk/β d3 # h

K ∈ V c
e (h) ∩ L1 \ L0 d1 # d2 # hk/β d3 # h r1−β/kc,K

K ∈ V 0(h) d1 # d2 # d3 � h.

For elements belonging to intersections of V 0(h), V 0
c (h), V 0

e (h), V c
e (h) any of the admissible

strategies can be adopted since in such regions, they are equivalent to each other. The constants
hidden in the symbols � and # are uniform on the whole family {Th}h∈h .

Proposition 5.1 The number of elements of the mesh Th in a family satisfying Assumption 2k,β
is O(h−3) .

This proposition is a consequence of its 1D version, that we state in the following way (and
where τ corresponds to k/β ):

Lemma 5.2 Let τ ≥ 1 . Let
(
γn

)
n

be a sequence of numbers such that c−1 ≤ γn < c for a
c > 0 and all n ∈ N ,. Let us fix N ∈ N and define the two sequences

(
δn

)
n

and
(
tn

)
n

by

δ1 = t1 = γ1N
−τ and ∀n ≥ 1 : δn+1 = γn+1N

−1t1−1/τ
n and tn+1 = tn + δn+1. (45)

Then tN = O(1) and δN = O(N−1) .
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Proof: 1. Let us start with the usual refinement strategy which consists of taking tn = (n/N)τ

and δ1 = t1 , δn+1 = tn+1 − tn . The conclusion of the lemma is satisfied for this couple of
sequences. Let us prove that (45) is satisfied. We compute that, for n ≥ 1

δn+1

(
N−1t

1−1/τ
n

)−1
= n

(
(1 + 1

n)τ − 1
)

=: γ0
n+1.

It is easy to see that τ ≤ γ0
n+1 ≤ τ 2τ−1 for all n ≥ 1 . Therefore these sequences satisfy the

assumptions of the lemma for γn = γ0
n .

2. Let γ > 0 . Let us now consider tn = γ(n/N)τ and δ1 = t1 , δn+1 = tn+1 − tn . There holds

δn+1

(
N−1t1−1/τ

n

)−1
= γ1/τγ0

n+1.

These sequences still satisfy the assumptions and the conclusion of the lemma.

3. If γn ≤ γ′n , the sequences δn , tn , δ′n , t′n constructed by formula (45) are such that δn ≤ δ′n
and tn ≤ t′n . Let

(
δn

)
n

and
(
tn

)
n

satisfy (45). It is easy to construct γmin and γmax such that

∀n ≥ 1, γ
1/τ
minγ

0
n+1 ≤ γn+1 ≤ γ1/τ

maxγ
0
n+1.

Since the couples of sequences of type 2. satisfy the conclusion of the lemma, the same holds for
the sequences

(
δn

)
n

and
(
tn

)
n

. �

5.2 Best approximation error

This section is devoted to the proof of the following theorem:

Theorem 5.3 Let the degree k ≥ 1 be fixed. Let
{
Th

}
h∈h

be a family of meshes verifying
Assumptions 1 and 2k,β for a positive index β such that β ≤ βΩ where βΩ is the parameter of
Theorem 4.1. Then, for every u verifying (43), there holds:

inf
vh∈Xh

‖u− vh‖X ≤ Chk ≤ C ′N−k/3, (46)

where C and C ′ are constants depending on k , but not on h or N .

The proof of this theorem needs several steps which are presented in form of lemmas.
First about the relative sizes of the elements in the regions V 0

c (h), V 0
e (h), V c

e (h) .

Lemma 5.4 (Relative sizes) For all x ∈ K , K ∈ Th \ L1 , there holds

K ∈ V 0
c (h) \ L1, rc(x) # rc,K � d1(# d2 # d3)

K ∈ V 0
e (h) \ L1, re(x) # re,K � d1(# d2)

K ∈ V c
e (h) \ L1, re(x) # re,K � d1(# d2) and rc(x) # rc,K � d3.

(47)

If, moreover K ∈ L2 :

K ∈ V 0
c (h) ∩ L2, rc(x) # rc,K # d1 # hk/β

K ∈ V 0
e (h) ∩ L2, re(x) # re,K # d1 # hk/β

K ∈ V c
e (h) ∩ L2, re(x) # re,K # d1 # hk/β and rc(x) # rc,K # d3 # hk/β .

(48)
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Proof: Let K ∈ V 0
c (h) \ L1 . By definition rc,K ≤ rc(x) . We also know that rc(x) ≤

rc,K + ch r
1−β/k
c,K (c denotes a constant). We need then to prove: rc,K + ch r

1−β/k
c,K � rc,K .

Which is equivalent to h � r
β/k
c,K , i.e. to hk/β � rc,K , which is always the case by Assumption

2k,β for K ∈ V 0
c (h) \ L1 .

Since in the same region the characteristic dimensions di are all equivalent to h r1−β/kc,K , the
same proof yields that di � rc,K . If, moreover, K belongs to the layer L2 , rc,K coincides with
the value of rc(x) for x in an element K ′ ∈ L1 , then rc,K � hk/β , which gives that di � rc,K .

For the regions V 0
e (h) and V c

e (h) , the proof is similar. �

Lemma 5.5 There exists a smooth cut-off function χh which is 0 on L1 and 1 outside L1 ∪L2 ,
and which satisfies the estimates

K ∈ V 0
c (h) ∩ L2, ‖∂αχh‖∞,K � r

−|α|
c,K

K ∈ V 0
e (h) ∩ L2, ‖∂αχh‖∞,K � r

−|α⊥|
e,K

K ∈ V c
e (h) ∩ L2, ‖∂αχh‖∞,K � r

−α3

c,K r
−|α⊥|
e,K .

(49)

The existence of such a function is a consequence of the estimates (48).

Lemma 5.6 The following continuity estimates hold for ϕ ∈ Mm,p
γ (Ω) and ϕ ∈Mm,p

γ (Ω) :

‖χhϕ‖Mm,p
γ (Ω) � ‖ϕ‖Mm,p

γ (Ω) (50)

∀α, |α| = 1, ‖(∂αχh)ϕ‖Mm,p
γ+1(Ω) � ‖ϕ‖Mm,p

γ (Ω) (51)

‖χhϕ‖Mm,p
γ (Ω) � ‖ϕ‖Mm,p

γ (Ω). (52)

Proof: In order to prove (50), we prove the estimate: ‖χhϕ‖Lm,p
γ (V c

e ) � ‖ϕ‖Lm,p
γ (V c

e ) . The

estimates in V 0
e and V 0

c are similar.

‖χhϕ‖pLm,p
γ (V c

e )
=

∑
|α|≤m

∫
V c
e

(
rα3
c r

α⊥+γ
e

)p ∑
|k|≤α

| ∂α−kχh∂
kϕ|p dx

�
∑

|α|≤m

∑
|k|≤α

∫
V c
e

(
rα3
c r

α⊥+γ
e

)p (
rk3−α3
c rk⊥−α⊥

e

)p|∂kϕ|p dx

�
∑

|k|≤m

∫
V c
e

(
rk3
c r

k⊥+γ
e

)p|∂kϕ|p dx � C‖ϕ‖p
Lm,p

γ (V c
e )

(53)

The proof of the (51) and (52) follows the same line. �

From now on we adopt the notation ‖ · ‖p,K to denote the norm in Lp(K) or Lp(K) .

Lemma 5.7 (Local Estimates) Let Assumptions 1 and 2k,β hold true. For all K ∈ Th \ L1 and
ϕ ∈Wk,p(K) such that curlϕ ∈Wk,p(K) , it holds:

‖ϕ−ΠKϕ‖p,K � hk‖ϕ‖
Mk,p

−β(K)
(54)

‖ curlϕ− curlΠKϕ‖p,K � hk‖ curlϕ‖
Mk,p

−β(K)
. (55)
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Proof: We make use of the anisotropic local interpolation estimates obtained in Section 3.
The two dimensions d1 and d2 are always equivalent: Let d⊥ := min{d1, d2} . We have in

any case d⊥ � d3 . Using Proposition 3.5 (i) for ϕ = (ϕ1, ϕ2, ϕ3) , we obtain

‖ϕ−ΠKϕ‖p,K � D1 +D2 +D3, with:

Di =
∑
|α|=k

‖dα∂αϕi‖p,K , i = 1, 2, D3 =
∑
|α|=k

d3

d⊥
‖dα∂αϕ3‖p,K . (56)

For i = 1, 2 we have

K ∈ V 0
e (h) \ L1 : Di � hk

∑
|α|=k

‖r|α⊥|(1−β/k)
e ∂αϕi‖p,K

K ∈ V c
e (h) \ L1 : Di � hk

∑
|α|=k

‖rα3(1−β/k)
c r

|α⊥|(1−β/k)
e ∂αϕi‖p,K

(57)

and for i = 3

K ∈ V 0
e (h) \ L1 : D3 � hk

∑
|α|=k

‖r(|α⊥|−1)(1−β/k)
e ∂αϕ3‖p,K

K ∈ V c
e (h) \ L1 : D3 � hk

∑
|α|=k

‖r(1+α3)(1−β/k)
c r

(|α⊥|−1)(1−β/k)
e ∂αϕ3‖p,K

(58)

Now, since |α⊥| ≤ k , for K ∈ V 0
e (h) we have r|α⊥|(1−β/k)

e ≤ r|α⊥|−β
e and r(|α⊥|−1)(1−β/k)

e ≤
r
|α⊥|−1−β
e , whereas for K ∈ V c

e (h) , since it holds re ≤ rc , we have

r
α3(1−β/k)
c r

|α⊥|(1−β/k)
e ≤ rα3

c r
|α⊥|−β
e , r

(1+α3)(1−β/k)
c r

(|α⊥|−1)(1−β/k)
e ≤ r1+α3

c r
|α⊥|−β−1
e .

Moreover, any element K ∈ V 0
c (h) \ L1 is regular and the estimate goes smoothly:

‖ϕ−ΠKϕ‖p,K � hk
∑
|α|=k

‖r|α|−β
c u‖p,K � hk‖ϕ‖

Mk,p
−β(K)

(59)

Finally, for K ∈ V 0(h) the estimate is standard since the element K is regular. Thus (56)-(59)
imply the local estimate (54).

The estimate (55) on the curl part is easier since the interpolation operator is diagonal – cf.
Proposition 2.8 and (34). We show it for a K ∈ V c

e (h) :

‖ curlϕ− curlΠKϕ‖p,K �
∑
|α|=k

‖dα∂α curlϕ‖p,K

� hk
∑
|α|=k

‖rα3(1−β/k)
c r

|α⊥|(1−β/k)
e ∂α curlϕ‖p,K

� hk‖ curlϕ‖
Mk,p

−β(K)
.

(60)

The other cases go similarly, and this ends the proof. �
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Proof of Theorem 5.3. We make use of the decomposition (43) introduced in Theorem 4.1 and
apply the cut-off function in the following way:

u = {χhu0 +∇χhq}+ (1− χh)u0 +∇(1− χh)q (61)

and the best approximation error is estimated taking as an approximation Πk(χhu0 + ∇χhq) ,
where Πk denotes the global interpolation operator for edge elements of degree k . This immedi-
ately implies:

inf
vh∈Xh

‖u− vh‖X ≤ (i) ‖χhu0 −Πk(χhu0)‖X
(ii) + ‖∇χhq −Πk(∇χhq)‖X

(iii) + ‖(1− χh)u0‖X + ‖∇(1− χh)q‖X .
(62)

We need now to estimate each term (i), (ii) and (iii) on the right hand side.

(i) Since u0 belongs to Mk,p
−1−β(Ω) , it also belongs to Mk,p

−β(Ω) , therefore, by Lemma 5.6,

χhu0 ∈ Mk,p
−β(Ω) . Since u0 also belongs to Mk+1,p

−1−β(Ω) , its curl is in Mk,p
−β(Ω) . Then we

use the identity
curlχhu0 = ∇χh × u0 + χh curl u0 ,

and Lemma 5.6 to deduce that curlχhu0 ∈ Mk,p
−β(Ω) . Therefore we can apply Lemma 5.7 to

ϕ = χhu0 . Since the support of χhu0 is contained in Ω \ L1 , we can sum over all K ∈ Th and
obtain:

‖χhu0 −Πk(χhu0)‖X � hk
{
‖u0‖Mk,p

−β(Ω)
+ ‖ curl u0‖Mk,p

−β(K)

}
� hk ‖u0‖Mk+1,p

−1−β(Ω)
.

(63)

(ii) Since q belongs to Mk+1,p
−1−β(Ω) , by Lemma 5.6, χhq also belongs to Mk+1,p

−1−β(Ω) , therefore

∇χhq belongs to Mk,p
−β(Ω) . Since its curl is zero, we can directly apply Lemma 5.7 to ϕ = ∇χhq

and obtain
‖∇χhq −Πk(∇χhq)‖X � hk‖q‖

Mk+1,p
−β (Ω)

. (64)

(iii) As a consequence of u0 ∈ M1,p
−1−β(Ω) and q ∈ M1,p

−β(Ω) , the three fields (1 − χh)u0 ,

curl((1−χh)u0) and ∇(1−χh)q all belong to M0,p
−β(Ω) . Moreover their supports are contained

in Ωh :=
⋃
K∈L1∪L2

K . As a consequence of Lemma 5.8 below, we obtain immediately

‖(1− χh)u0‖X + ‖∇(1− χh)q‖X � hk
{
‖u0‖M1,p

−1−β(Ω)
+ ‖q‖

M1,p
−β(Ω)

}
. (65)

The combination of the four estimates (62)-(65) gives that there exists vh ∈ Xh such that

‖u− vh‖ � hk
{
‖u0‖Mk+1,p

−1−β(Ω)
+ ‖q‖

Mk+1,p
−β (Ω)

}
. (66)

The conclusion of Theorem 5.3 is now a consequence of the Céa estimate (70). �

Lemma 5.8 Under Assumption 2k,β , let Ωh :=
⋃
K∈L1∪L2

K and ψ ∈ M0,p
−β(Ω) . Then

‖ψ‖p,Ωh
� hk‖ψ‖

M0,p
−β(Ω)

.
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Proof: The layer domain Ωh is contained in V 0
c ∪ V 0

e ∪ V c
e . We note that, as a consequence

of Lemma 5.4 and particularly (48), in Ωh∩V 0
c and Ωh∩ (V 0

e ∪V c
e ) there holds rc � hk/β and

re � hk/β , respectively. Therefore for K ∈ L1 ∪ L2 ,

if K ⊂ (V 0
c ) : ‖ψ‖p,K �

(
sup
K
rβc

)
‖r−βc ψ‖p,K � hk‖ψ‖

M0,p
−β(K)

if K ⊂ (V 0
e ∪ V c

e ) : ‖ψ‖p,K �
(
sup
K
rβe

)
‖r−βe ψ‖p,K � hk‖ψ‖

M0,p
−β(K)

.

Adding these estimates ends the proof. �

5.3 Algebraic optimality of the Galerkin approximation

Let now Xh ⊂ H0(curl,Ω) be the edge element space generated by Nk , i.e.:

Xh = {vh ∈ H0(curl,Ω) : ∀K ∈ Th DΦ�
K(vh

∣∣
K
◦ Φk) ∈ Nk}. (67)

The Galerkin problem associated with (3) reads: Find uh ∈ Xh such that:∫
Ω

(curl uh · curl vh − λuh · vh) =
∫
Ω

f · vh ∀vh ∈ Xh (68)

Theorem 5.9 Let u be the solution of problem (3) with λ 
∈ [0,+∞[ and a regular right hand
side f . Let the degree k ≥ 1 be fixed. Let

{
Th

}
h∈h

be a family of meshes verifying Assumptions
1 and 2k,β for a positive index β such that β ≤ βΩ where βΩ is the parameter of Theorem 4.1.
Then, the variational problem (68) is well-posed and moreover:

‖u− uh‖X ≤ Chk ≤ C ′N−k/3

where C and C ′ depend on k , but not on h or N .

Proof: It is enough to prove that, if λ 
∈ [0,∞) , the bilinear form aλ : (u,v) �→
∫
Ω(curl u ·

curl v − λu · v) is strongly coercive on X , i.e., there exists α ∈ C such that

Re
(
αaλ(u,u)

)
≥ ‖u‖2X . (69)

Since λ is not real ≥ 0 , we can write −λ in the form −λ = ρeiθ with θ ∈ (−π, π) . Then,
if we choose α = e−iθ/2 , we obtain the strong coercivity (69) since then Reα and −Reαλ are
both positive. The variational problem (68) admits then a unique solution. Moreover, the Céa-type
estimate:

‖u− uh‖X � inf
vh∈Xh

‖u− vh‖X . (70)

holds. Theorem 5.3 allows to conclude. �

6 Extensions

In this section we consider three different extensions for the theory presented in Section 5.2 to the
case of over-refinement meshes (so not verifying Assumption 2k,β ) and for piecewise homoge-
neous materials.
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It is worth noting that in Section 6.2 and 6.3 the over-refinement we consider is different
from the tensor product hexahedral meshes of Section 6.1. This is an edge-corner refinement in
the sense of Assumption 2k,β around fictitious internal edges and corners for the convenience of
mesh design. In the case of piecewise-homogeneous materials on polyhedral partition of Ω , there
appear actual internal edges and corners. In both situations, we have to revisit the decomposition
(43) in a gradient and a less singular part to conclude.

6.1 Tensor product hexahedral meshes

If hexahedral elements are used in the family
{
Th

}
h∈h

, the projection operators Π̂ and R̂ are
diagonal. Thus, thanks to Proposition 3.2 (ii), in estimates (56), the bound D3 has a similar
structure as D1 and D2 :

D3 =
∑
|α|=k

‖dα∂αϕ3‖p,K . (71)

This allows for proving the local estimates (54)-(55) under the relaxed assumption on the meshes:

Assumption 3k,β The number of elements K of Th is O(h−3) and the elements satisfy:

K ∈ V 0
c (h) \ L1 hk/β � d1, d2, d3 � h r

1−β/k
c,K

K ∈ V 0
e (h) \ L1 hk/β � d1, d2 � h r

1−β/k
e,K hk/β � d3 � h

K ∈ V c
e (h) \ L1 hk/β � d1, d2 � h r

1−β/k
e,K hk/β � d3 � h r

1−β/k
c,K

K ∈ L0 d1 # d2 # d3 # hk/β

K ∈ V 0
e (h) ∩ L1 d1 # d2 # hk/β hk/β � d3 � h

K ∈ V c
e (h) ∩ L1 \ L0 d1 # d2 # hk/β hk/β � d3 � h r

1−β/k
c,K

K ∈ V 0(h) hk/β � d1, d2, d3 � h.

The lower bound hk/β for all dimensions of all elements in the mesh allows to keep the size
estimates (47)-(48) (Lemma 5.4). We can check that all arguments in the proof of Theorem 5.3
are still valid and thus we obtain

Theorem 6.1 Let the degree of the elements k ≥ 1 be fixed. Let
{
Th

}
h∈h

be a family of hexa-
hedral meshes verifying Assumptions 1 and 3k,β , and let the right hand side f be regular enough.
Then, if the Céa-type estimate (70) holds, the Galerkin method (68) is algebraically optimal of
degree k .

As a corollary of this theorem, we obtain that graded tensor product meshes provide alge-
braically optimal Galerkin methods.

Corollary 6.2 With a fixed k ≥ 1 let
{
Th

}
h∈h

be a family of hexahedral meshes constructed by
a macro decomposition of Ω in hexahedra, each of them being meshed by a tensor mesh, product
of 1D graded mesh of the form (45) with τ = k/β . Then, if the Céa-type estimate (70) holds, the
Galerkin method (68) is algebraically optimal of degree k .
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6.2 Over-refinement

It may happen that a decomposition of the domain in hexahedral macro-elements Ωj helps for
the mesh design: Without significant loss of degrees of freedom, a refined mesh on Ω can be
constructed by the combination of refined meshes on the Ωj where the edges and corners are now
those of the Ωj : For example, a refined mesh on the Fichera corner Ω := (−1, 1)3 \ (−1, 0]3

can be obtained by refined meshes on the seven cubes of which Ω consists. The outcome is an
over-refined mesh on Ω where the sets E and C of edges and corners are now augmented by
those of the Ωj : let us denote by E ∗ and C ∗ those augmented sets. With these new sets we
associate regions V 0

c , V 0
e , V c

e and distance functions re and rc like before.
Such an over-refined mesh satisfies Assumption 3k,β , and if it is hexahedral, Theorem 6.1

yields the algebraic optimality. If the mesh is tetrahedral, we have to revisit decomposition (43).
Of course, there are no singularities inside the internal edges or at the internal corners. We

still have a corner type singular behavior near the external corners along the internal edges. It
is possible to prove that the decomposition (43) can be replaced by the following more precise
version

u = u0 +∇q where q = q0 + q1 + qreg and:

u0 ∈M∗,m,p
−1−β(Ω)

q0 ∈ M∗,m+1,p
−1−β (Ω), q1 ∈Wm+1,p

−1−β (Ω), qreg ∈Wm+1,p(Ω).

(72)

Here we have made use of new spaces M∗,m,p
γ (Ω) and M∗,m,p

γ (Ω) : They are defined as Mm,p
γ (Ω)

and Mm,p
γ (Ω) , simply replacing the sets E and C by their augmented versions E ∗ and C ∗ . As

for Wm,p
γ (Ω) , it bears weights only at the corners c ∈ C (we denote by Vc the global corner

neighborhood Vc := V 0
c ∪

⋃
e∈Ec V

c
e ):

Wm,p
γ (Ω) :=

{
u ∈ Lp(Ω) : ∀ |α| ≤ m ∂αu ∈ Lp(V 0),

∀ c ∈ C r
γ+|α|
c ∂αu ∈ Lp(Vc)

}
.

(73)

The decomposition (72) allows for proving the algebraic optimality of degree k for any tetra-
hedral over-refined mesh in the above sense: There we use the fact that the projection operator Π̂
is diagonal on gradients and the estimate in Proposition 3.2 (ii).

6.3 Piecewise-homogeneous materials

We assume now that Ω admits a decomposition into a finite number of polyhedral subdomains Ωj ,
j = 1, . . . , J , so that the magnetic permeability µ and the electric permittivity ε are constant (and
equal to some positive numbers µj and εj ) on Ωj . The electric problem has now to interpreted
as a transmission problem between the subdomains Ωj with the interface conditions [u× n] = 0
and [εu · n] = 0 . The variational form of the electric problem is, instead of(3):

Find u ∈ H0(curl,Ω) such that:∫
Ω

µ−1 curl u · curl v − λεu · v =
∫
Ω

f · v ∀v ∈ H0(curl,Ω). (74)

The singularities of u are now also present along internal edges and corners (i.e. the edges
and corners of the Ωj which are not contained in ∂Ω ). They are described in [24]. There are two
main differences from the fully homogeneous case:
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1. The singularities may be stronger: in general u is not piece-wise H1/2 ;

2. The expansion along the internal edges e contain regular terms of the form (re, θe, ze) �→
de(ze) in local cylindrical coordinates, with de smooth inside e . Such terms do not fit well
with the weighted spaces M .

We define the sets E ∗ and C ∗ as in Section 6.2. Then, if f is regular enough, we have the
following decomposition for all m > 0 , similar to (72)

u = u0 +∇q where q = q0 + q1 + qreg and:

u0 ∈M•,m,p
−1−β(Ω)

q0 ∈ M•,m+1,p
−1−β (Ω) with ∇q0 ∈ M•,m,p

−β (Ω),

q1 ∈W∗,m+1,p
−1−β (Ω), qreg ∈Wm+1,p(Ω).

(75)

where β = β(Ω) > 0 and p = p(Ω) > 2 . Here M•,m,p
γ (Ω) and M•,m,p

γ (Ω) are defined as
M∗,m,p

γ (Ω) and M∗,m,p
γ (Ω) above with the distinction that the derivatives are now considered in

each Ωj separately, which means that the regularity in M•,m,p
γ (Ω) and M•,m,p

γ (Ω) is a piecewise
regularity inside each Ωj .

The space W∗,m,p
γ (Ω) bears weights at all corners c ∈ C ∗ and is defined similarly as

Wm,p
γ (Ω) in (73):

W∗,m,p
γ (Ω) :=

{
u ∈ Lp(Ω) : ∀ |α| ≤ m ∂αu ∈ Lp(V 0),

∀ c ∈ C ∗ r
γ+|α|
c ∂αu ∈ Lp(Vc)

}
.

(76)

Note that if β < 3
p−1 , the part qreg is no more of any use since then Wm+1,p(Ω) ⊂W∗,m+1,p

−1−β (Ω) .

The Galerkin problem associated with (74) reads: Find uh ∈ Xh such that:∫
Ω

(µ−1 curl uh · curl vh − λεuh · vh) =
∫
Ω

f · vh ∀vh ∈ Xh (77)

The results in the previous sections can be extended as

Theorem 6.3 Let the degree k ≥ 1 be fixed. We assume (i) or (ii):

(i) The family of meshes
{
Th

}
h∈h

satisfies Assumptions 1 and 2k,β inside each Ωj .

(ii) The family of meshes
{
Th

}
h∈h

satisfies Assumptions 1 and 3k,β inside each Ωj and are
formed with hexahedral elements.

Then, if the Céa-type estimate (70) holds, the Galerkin method (77) is algebraically optimal of
degree k .

7 Discrete compactness and the eigenvalue problem

In Section 5, relying on the coercivity of problem (3) when λ ∈ C\R+ , we have proved algebraic
optimality for our Galerkin approximation. The extension to positive λ is not straightforward. A
necessary condition for that is the “spectral correctness” of the Galerkin approximation, which
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means that all discrete eigenvalues converge towards eigenvalues of problem (3) and, conversely,
all eigenvalues of problem (3) are approximated, all respecting multiplicities.

Due to the infinite dimensional kernel K of problem (3), the spectral correctness is not an easy
consequence of the coercivity of the form (u,v) �→ (curl u, curl v) + (u,v) on H0(curl,Ω) ,
because the embedding of H0(curl,Ω) into L2(Ω) is not compact. Related to the fact that the
condition div v = 0 eliminates K , the subspace V of divergence-free fields:

V =
{
v ∈ H0(curl,Ω) : div v = 0

}
,

is compactly embedded in L2(Ω) . The condition div v = 0 cannot be forced into the discrete
spaces, but only imitated in the form of the discrete divergence free condition: The discrete coun-
terpart of V is Vh , the subspace of discrete divergence-free fields defined as

Vh =
{
vh ∈ Xh :

∫
Ω vh · ∇ph = 0, ∀ ph ∈ Ph

}
,

where Ph is the space of piecewise polynomial continuous functions generated by Pk (see Section
2.1).

The discrete compactness property [35] is a necessary and sufficient condition for the spec-
tral correctness of the Galerkin projection [10] and [16]. This property is a consequence of the
following condition: There exists a sequence δh , δh → 0 when h→ 0 such that

∀vh ∈ Vh ∃v ∈ V : ‖v − vh‖X � δh‖vh‖X (78)

see [10, 11], [17] and also [13].

7.1 The source problem

It is well known that the problem (68) is well-posed and quasi-optimal if and only if the discrete
inf-sup condition:

∃α ∈ R : inf
vh∈Xh

sup
uh∈Xh

aλ(uh,vh)
‖uh‖X‖vh‖X

≥ α > 0 (79)

holds uniformly in h ∈ h . Using [15, Theorem 4.1] (see also [13]), we know that (79) holds for
h sufficiently small if condition (78) holds.

For the proof of (78), we fix vh ∈ Vh and choose for v the solution of the problem:

v ∈ H0(curl,Ω) : curl v = curl vh , div v = 0. (80)

We first prove a regularity result for v in the form a splitting in a “ regular” fi eld and a gradient:

Lemma 7.1 For all p ≥ 2 , v can be split into

v = w +∇q with w ∈W1,p
0 (Ω) and q ∈ H1

0(Ω) : ∆q ∈ Lp(Ω). (81)

with estimates
‖w‖W1,p(Ω) + ‖∆q‖Lp(Ω) � ‖vh‖X + ‖ curl vh‖Lp(Ω) (82)

Proof: We note that curl v = curl vh belongs to Lp(Ω) for all p ≥ 2 . The proof consists in
proving (81) for any v ∈ H0(curl,Ω) such that curl v ∈ Lp(Ω) and div v = 0 .
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Let O be an open ball containing Ω . Let ṽ be the extension by zero of v to O . Then curl ṽ
is the extension by zero of curl v to O . The straightforward generalization to the spaces Lp of [3,
Lemma 3.5] gives the existence of w0 ∈W1,p(Ω) such that div w0 = 0 and curlw0 = curl ṽ .

Since curlw0 = 0 in O \ Ω there exists ψ ∈ W2,p(O \ Ω) such that w0 = ∇ψ in O \ Ω .
There exists an extension ψ̃ ∈W2,p(O) of ψ to Ω : ψ̃

∣∣
O\Ω = ψ .

We set w := w0 −∇ψ̃ in O . Thus

w ∈W1,p(O) and w
∣∣
O\Ω = 0.

Therefore w belongs to W1,p
0 (Ω) .

Let v1 be the difference v −w . Since curl v1 = curl v − curlw0 = 0 in Ω , there exists
q ∈ H1(Ω) such that v1 = ∇q . Since

div v1 = div v − div w = ∆ψ̃ ∈ Lp(Ω)

we obtain that ∆q belongs to Lp(Ω) , which ends the proof, since the estimates can be proved at
each stage. �

Corollary 7.2 The Nédélec interpolation operator Πk is well defined for the solution v of prob-
lem (80).

Proof: In the splitting (81) of v , the potential q belongs to Hδ+3/2(Ω) for a δ > 0 , hence is
continuous on Ω . Therefore the Lagrange interpolation operator πk is well defined on q and we
have

Πkw +∇(πkq) = Πk(w +∇q), (83)

which gives sense to Πkv . �

Lemma 7.3 For the solution v of problem (80) the following estimate holds

‖v − vh‖X � ‖v −Πkv‖L2(Ω). (84)

Proof: The proof is known as NÉDÉLEC’s trick, see [34]. For completeness we recall its simple
arguments. Since curl(v − vh) = 0 , the norms ‖v − vh‖X and ‖v − vh‖L2(Ω) coincide. In

order to estimate the L2 norm we evaluate the scalar product:

‖v − vh‖2L2(Ω)
= (v − vh,v − vh)

= (v − vh,v −Πkv + Πkv − vh).
(85)

If we prove that
(v − vh,Πkv − vh) = 0 (86)

estimate (84) is clearly a consequence of (85). So, let us prove (86).
Since vh belongs to Xh , Πkvh = vh , therefore Πkv − vh = Πk(v − vh) .
Since curl(v−vh) = 0 , there exists q ∈ H1(Ω) such that v−vh = ∇q . Since Πk(v−vh)

makes sense, πkq also makes sense and we have

Πkv − vh = Πk(v − vh) = ∇(πkq).

Now, (v,Πkv − vh) = (v,∇πkq) is zero since div v = 0 , and (vk,Πkv − vh) = (vh,∇πkq)
is zero since vh ∈ Vh and πkq ∈ Ph . We have obtained (86), which ends the proof. �
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Now we are able to prove that condition (78) holds for low order edge elements on anisotropic
tetrahedral meshes and for edge elements of any order on hexahedral anisotropic refined meshes,
provided an approximation result holds for the solutions of the scalar Dirichlet problem:

q ∈ H1
0(Ω), and ∆q = g. (87)

Assumption 4 (i) or (ii) holds:
(i) The meshes Th are tetrahedral, k = 1 .
(ii) The meshes Th are hexahedral, k ≥ 1 , and there exists σ∗ > 0 and p∗ > 2 such that for all
p ∈ (2, p∗) and for all g ∈ Lp(Ω) the following estimate holds between the solutions q of (87)
and its interpolate πkq :

‖q − πkq‖H1(Ω) � hσ
∗‖g‖Lp(Ω). (88)

We present (88) as an assumption here, because no proof seems to exist in published form.
From [5] we conclude, however, that a proof, using techniques similar to [6], is possible.

Theorem 7.4 Let the family of meshes
{
Th

}
h∈h

satisfy Assumptions 1 and 2k,β . We assume
moreover that Assumption 4 holds. Then there exists σ > 0 such that the solution v of problem
(80) satisfy the following approximation estimate

‖v −Πkv‖L2(Ω) � hσ‖vh‖X . (89)

Therefore (78) holds.

Proof: Using (81) and (83), we obtain

‖v −Πkv‖L2(Ω) ≤ ‖w −Πkw‖L2(Ω) + ‖q − πkq‖H1(Ω). (90)

To bound the first piece ‖w −Πkw‖L2(Ω) , we use Proposition 3.2 which gives us

‖w −Πkw‖L2(Ω) � h‖w‖W1,p(Ω) for hexahedral meshes

For tetrahedral meshes and when k = 1 , we are exactly in the situation of Proposition 3.4
since curlw is a constant vector. We then have:

‖w −Πkw‖L2(Ω) � h‖w‖W1,p(Ω) for tetrahedral meshes and k = 1.

Concerning the second piece ‖q − πkq‖H1(Ω) , we use (88) in any situation: For tetrahedral
meshes and k = 1 , it is proved in [7] and we assume in (ii) that it holds for hexahedral meshes.

Therefore we have obtained that there exists σ′ > 0 and p∗ > 2 such that for all p ∈ (2, p∗)

‖v −Πkv‖L2(Ω) � hσ
′
(‖w‖W1,p(Ω) + ‖∆q‖Lp(Ω)).

Combining with (82), that implies

‖v −Πkv‖L2(Ω) � hσ
′
(‖vh‖X + ‖ curl vh‖Lp(Ω)).

We end the proof by virtue of the inverse inequality

‖ curl vh‖Lp(Ω) � h
3( 1

p
− 1

2
) k

β ‖ curl vh‖L2(Ω).

Choosing p close enough to 2 so that σ′ + 3(1
p − 1

2) kβ remains positive, we have obtained (89).
�
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Finally, combining Céa’s estimate which is a consequence of the inf-sup condition (79) with
the interpolation estimates of Theorem 5.3 we have obtained:

Theorem 7.5 Let λ > 0 be not an eigenvalue of (3) and the family of meshes
{
Th

}
h∈h

verify
the assumptions in Theorem 7.4. There exists a h0 such that, for all h < h0 the variational
problem (68) admits a unique solution. If u is the solution of (3), there holds:

‖u− uh‖X � inf
vh∈Xh

‖u− vh‖X .

Moreover, for sufficiently regular right hand side f : ‖u− uh‖X � hk.

As far as discontinuous coefficients are concerned, as it is shown in [13], the condition (78)
implies wellposedness also for the transmission problem (74). We have:

Corollary 7.6 Let λ > 0 be not an eigenvalue of (74) and the family of meshes
{
Th

}
h∈h

verify
the assumptions in Theorem 7.4. There exists a h0 such that, for all h < h0 the variational
problem (77) admits a unique solution. If u is the solution of (74), there holds:

‖u− uh‖X � inf
vh∈Xh

‖u− vh‖X .

Moreover, for sufficiently regular right hand side f : ‖u− uh‖X � hk.

7.2 The eigenvalue problem

The eigenvalue problem associated to (3) reads: Find λ > 0 , u ∈ H0(curl,Ω) such that:∫
Ω

curl u · curl v = λ

∫
Ω

u · v ∀v ∈ H0(curl,Ω). (91)

The eigenvalues λ are a positive increasing sequence {λj}j and have a finite multiplicity (Theo-
rem 1.1). Let us denote by Eλ the associated eigenspace and by m its dimension.

The corresponding Galerkin eigenvalue problem is then: Find λh > 0 , uh ∈ Xh such that:∫
Ω

curl uh · curl vh = λh

∫
Ω

uh · vh ∀vh ∈ Xh. (92)

As a consequence of the discrete compactness property, and therefore of (78), problems (92) are
a spurious-free spectrally correct approximation of (91) in the sense of [16]. As a consequence of
[28, Theorem 1 and 3], this implies the following estimates for any eigenvalue λ of (91):
(i) There exists exactly m eigenvalues λh,i , i = 1, . . . ,m (counted with their multiplicity) of (92)
such that limh→0 λh,i = λ , and moreover the following estimate holds:

max
i=1,...,m

|λ− λh,i| �
(

sup
u∈Eλ

‖u‖X=1

inf
vh∈Xh

‖u− vh‖X
)2
.

(ii) Let Eh,λ be the union of the discrete eigenspaces associated to {λh,i}1≤i≤m , then

sup
uh∈Eh,λ

‖uh‖X=1

inf
u∈Eλ

‖u− uh‖X + sup
u∈Eλ

‖u‖X=1

inf
uh∈Eh,λ

‖u− uh‖X � sup
u∈Eλ

‖u‖X=1

inf
vh∈Xh

‖u− vh‖X .

Since the best approximation result (46) also holds for eigenvectors, we obtain the following:
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Theorem 7.7 Let the assumptions of Theorem 7.4 hold. With the notation above, the following
holds for h small enough:

max
i=1,...,m

|λ− λh,i| � h2k

sup
uh∈Eh,λ

‖uh‖X=1

inf
u∈Eλ

‖u− uh‖X + sup
u∈Eλ

‖u‖X=1

inf
uh∈Eh,λ

‖u− uh‖X � hk.

As far as the transmission problem is concerned, the same kind of result hold thanks to the
validity of the discrete compactness property [16] and the regularity and approximation results
stated in Section 6.3.

8 Conclusive remarks

We have proved algebraic optimality of order k for a class of refined meshes using edge elements
of degree k in the following two cases

1. For any λ ∈ C \ R+ and any k ≥ 1 , using hexahedral elements or tetrahedral elements;

2. For any λ > 0 which is not an eigenvalue and any k using hexahedral elements; if tetrahe-
dral elements are used our proof is limited to k = 1 .

Let us comment on our assumptions for the mesh, in connection with the assumptions used
in the papers [7] (Laplace equation on polyhedra) and [40] (Maxwell equations on tensor product
domains Ω = G× Z , with a polygon G and an interval Z ).

Taking the special form of the domain G×Z into account, the assumptions on the refinement
parameters are all similar.

In [40], pentahedral and tetrahedral meshes are used. The pentahedral elements are tensor
product of uniformly refined triangles inside G by subintervals in Z . Thus they exactly satisfy
our Assumption 1. Note that our results would extend naturally to a pentahedral mesh, or to
a mixed pentahedral-hexahedral mesh, provided Assumption 1 holds. The tetrahedral elements
used in [40] are obtained by dividing each pentahedron in three tetrahedra K1 , K2 and K3 . Both
K1 and K2 have one face inside a plane G1 transverse to the edge. Thus they satisfy Assumption
1. In contrast, K3 has two of its vertices in such a plane G1 and the two others in another parallel
plane G2 . It does not satisfy Assumption 1. We would not be surprised if the result of [40]
obtained for k = 1 cannot be extended to k ≥ 2 , due to the fact that Propositions 3.4 and 3.7
have no clear generalization to k ≥ 2 .

Assumptions (3.2-3.3) of [7] are weaker than Assumption 1 because, in particular, they do not
impose any limitation on the aspect ratio of the elements. From our proofs, we see that such a
limitation is connected to the vector nature of interpolant, and appears to be necessary as soon as
there is no commutation property with the projection on the axes of coordinates.
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